EDMONTON W&TERWORKS

ANNUAL REPORT TO ALBERTA ENVIRONMENT AND WATER

Approval Number 638-04-00

2021

2022 ANNUAL REPORT

TABLE OF CONTENTS

1.0 <u>Overview</u>

1.1	Overview	1
1.2	Process Schematic – Rossdale (Plants 1 & 2)	5
1.3	Process Schematic – E. L. Smith (Plant 4)	6
1.4	Summary of Violations and Notifications	7
1.5	Alberta Environmental Operator Certifications	13
1.6	Demand Production Statistics (Estimated highlift flow)	21
1.7	Energy Consumption and Usage	22
1.8	Summary of Changes to the Operations Program	23

2.0 Raw Pumpage, Treated Pumpage and Distribution System

2.1	Storage Capacities of Reservoirs	25
2.2	Reservoir Pressure Operating Ranges	26
2.3	Fire Hall and other City Pressure Limits	27
2.4	Regional Customers	29
2.5	Pumping Facilities within the City of Edmonton Distribution System	
2.6	Production Summary	31
2.7	Raw Water Intake (ML)	32
2.8	Treated Water Production (ML)	

3.0 Water Quality

3.1	Raw Water Quality – North Saskatchewan River	34
3.2	Treated Water Quality Entering the Distribution System	35
3.2-1	Treated Water Quality entering the Distribution System	36
3.3	Rossdale Filters 1 - 9 Particle Counts (no./mL,>2um)	37
3.4	E.L. Smith Filters 1 - 9 Particle Counts (no./mL,>2um)	38
3.5	E.L. Smith Filters 10 -18 Particle Counts (no./mL,>2um)	39
3.6	Rossdale Filters 1 – 9 Turbidity (NTU)	40
3.7	E.L. Smith Filters 1 – 9 Turbidity (NTU)	41
3.8	E.L. Smith Filters 10 – 18 Turbidity (NTU)	42
3.9	Combined Filter Effluent Water Quality	43
3.10	Rossdale UV Disinfection – Filters 1 - 3	44
3.11	Rossdale UV Disinfection – Filters 4 - 6	45
3.12	Rossdale UV Disinfection – Filters 7 - 9	46
3.13	E. L. Smith UV Disinfection – UV Reactors 1 - 4	47
3.14	Log Removal	48

4.0 Chemicals

4.1	Liquid Alum Chemical Consumption	49
4.2	Primary Polymer (Magnafloc LT 27AG) Chemical Consumption	50
4.3	Carbon Chemical Consumption	51
4.4	Sodium Hypochlorite Chemical Consumptin	52

4.4-1	Chlorine and Sodium Hypochlorite Chemical Consumption	
4.5	Filter Polymer (Magnafloc LT 7995) Chemical Consumption	54
4.6	Aqua Ammonia Chemical Consumption	
4.6-1	LAS Ammonia Chemical consumption	
4.7	Caustic Soda Chemical Consumption	
4.8	Fluoride Chemical Consumption	
4.9	Sodium Bisulfite Chemical Consumption	59

5.0 Waste Streams

5.1	Waste Stream Volumes (ML)	60
5.2	Rossdale Clarifier Blowdown, Clarifier Washdown and Backwash Water Waste Stream Data	61
5.3	Rossdale Waste Stream Data	62
5.4	E.L. Smith Clarifier Blowdown, Clarifier Washdown and Backwash Water Waste Stream Data	63
5.5	E.L. Smith Waste Stream Data	64
~ ^	Becomenin Chloring, Besidual D. ((05
6.0	Reservoir Chiorine Residual Part 1	65
6.1	Reservoir Chlorine Residual Part 2	66

7.0 Quality Assurance

7.1	Water Quality Objectives	67
7.2	Summary of Major Chemicals, Microbiological and Physical Parameters	68
7.3	Summary of Laboratory Analysis	69
7.4	Bacteriological Data: Water Treatment Plants	70
7.5	Bacteriological Data: Distribution System	76
7.6	Giardia and Cryptosporidium	81
7.7	Treated Water Entering the Distribution System	84
7.8	Rossdale and E.L. Smith combined Filter Effluent Water Analysis	89
7.9.a	Routine Distribution System	91
7.9.b	Complaint Investigations	98
7.10	Castledowns, Clareview and Discovery Park Reservoir	101
7.11	Kaskitayo, Londonderry, and Millwoods Reservoir	104
7.12	North Jasper Place, Ormsby, and Papaschase 1 Reservoir	107
7.13	Papaschase 2, Rosslyn 1, and Rosslyn 2 Reservoir	110
7.14	Thorncliff Reservoir	113
7.15	Disinfection Byproducts	116
7.16	Raw River Water	117
7.17	Lead Management Program	121
7.18	Reportable Detection Limits	123
7.19	Explanation of Notations Used	128

8.0	Summary of the Distribution System Extentions	129
9.0	Residuals Management Plan Report	136

1.1 Overview

Through 2021, EPCOR Water Services Inc. (EWSI) continued to satisfy all water demand requirements while meeting our strict water quality criteria. Total demand in 2021 was higher than 2020 and 2019 and in fact set some new peak demand records. EWSI received a new Approval to Operate 638-04-00 effective May 31, 2021.

Both EL Smith and Rossdale WTPs converted to conventional filtration on March 13 in advance of runoff. Due to lower snowpack in the watershed upstream, runoff was minimal and color peaked at 14 TCU. The Home Sniffing Program concluded mid-May with an average result of 96.0% satisfied for the 12 week period, well above the 94.4% PBR target.

High temperatures in late June led to record water demands within the system. Daily demand peaked at 608 ML/d on June 30, exceeding the historical high of 606 ML/d set in 2002. The maximum high 5-day demand was 591 ML/d, exceeding the historical high of 586 ML/d also set in 2002. The treatment plants were able to increase production to meet demands and reservoir levels remained within the normal operating ranges. With the higher demands, there were challenges maintaining normal service pressures in the tertiary and quaternary pressure zones in the SE corner of the city during the extreme evening peak. In response, EPCOR issued a call for voluntary restrictions on non-essential water use in the SE during the evening peak hours, which improved the situation. The restrictions were lifted July 5 after demands decreased.

Raw water conditions remained favourable through the remainder of the summer and fall. EL Smith WTP converted to direct filtration on November 1 and Rossdale WTP converted on November 3. The WTPs achieved 131 days in direct filtration in 2021, exceeding the internal goal of 120 days. Overall, in 2021, total solids discharged to the NSR were reduced by 13.4%, as compared to baseline conventional operation due to dry weather and stable raw water conditions.

EPCOR continued to assess the impacts of residuals to the NSR by generating better estimates of loads of TSS, dissolved aluminum and total metals from the WTPs, and determining the extent and duration of the exceedances of instream guidelines through a mass balance approach. To improve the ability to calculate loads, EPCOR developed a proposed Waste Stream Monitoring Program, submitted to AEP in December 2021, which will include installing flow monitoring equipment and autosamplers on select waste streams. The monitoring equipment, along with the results from the Waste Stream Monitoring Program, will assist in the calculation of loads and the assessment of both near-field and far-field impacts of WTP discharges on the NSR.

There were zero AEP approval contraventions at the WTPs in 2021. The WTPs continue to improve the integrated safety and environmental management system in accordance with the ISO 14001:2015 and 45001:2018 standard.

EWSI continued to upgrade the water treatment plants and the reservoir assets. Total expenditures in 2021 were approximately \$66.9 M. Some of the major projects are as follows:

- E.L. Smith Solar Farm all regulatory approvals were received in 2020 and construction of the solar farm commenced in 2021. The in-service date for the 13.6MW solar farm and battery energy storage system adjacent to the E.L. Smith WTP is expected to be fall 2022.
- E.L. Smith ELS filter structural rehabilitation was completed on Stage 1, Filter 3 in 2021. Filter 1 and Filter 2 rehabilitation work commenced in 2021 and will be completed by June 2022. This structural rehabilitation program on all of the Stage 1 and Stage 2 filters is necessary for future deep bed filtration implementation. The ELS Bypass main project was largely completed in 2021

and will be placed in service in early 2022. This new pipe provides additional supply heading north from ELS.

- Rossdale the SBS Room Upgrade project was completed as was a structural rehabilitation and roof membrane replacement at ROS Reservoir Cell 1.
- Reservoirs Rehabilitation of Clareview Reservoir commenced and will be completed in early 2022.
- Phosphoric Injection for Lead Control: construction is underway for the facilities at both WTPs and will be in service by the end of 2022.
- Plants Flood Protection: work progressed in 2021 on this multi-year project. Work completed in 2021 included initial public and Indigenous consultation, groundwater transient modeling analysis, preliminary design work for permanent flood barriers, installation of demountable flood barriers at select locations, and detailed risk assessments of all WTP assets to define the detailed scope of the flood mitigation project.

Blackmud Creek Booster Station (4810 Highway 2 Service Road SW) was purchased from CRSWSC and EPCOR assumed operation in January 2021. Parkland Booster Station (10203 186 Street NW) was purchased from CRPWSC and EPCOR assumed operation in December 2021.

In 2021, Water Distribution and Transmission repaired 303 water main breaks on the distribution system in Edmonton, with the majority of main breaks occurring on cast iron pipes. EPCOR generally experiences a higher volume of breaks in the first quarter of the year attributed to deeper frost penetration as we incurred 90 in this time frame. The overall reliability of the water distribution system can be attributed to the water main replacement programs as well as the use of more reliable pipe materials in both replacement and new water main construction.

In 2021, the Uni-Directional Flushing program completed flushing and valve exercising in about 26% of Edmonton (1836 runs). This program is now a six-year

cycle with area prioritization emphasis placed on water quality parameters, percentage of Cast Iron Mains, and the relative success of the previous flush.

In 2021, Water Distribution and Transmission completed a transmission main inspection on the major feed to the West Edmonton and St. Albert/ Parkland Region Water Service Commission (CRPWSC) using inline inspection technology. This inspection identified 3 minor leaks on appurtenances and will be repaired in 2022. Further inspections will be planned in the future to continue the success of this program.

There were 3 AEP approval contraventions Within WDT in 2021 concerning TC+ samples. All samples were determined to be from contaminated hydrants. Issues were addressed by super-chlorinating hydrant barrel and resampling.

EWSI continues to provide water and wastewater services and expertise to numerous communities in Alberta, British Columbia, Saskatchewan, as well as industrial sites in Fort McMurray.

As we move into 2022, we will continue to focus our efforts on the production of and distribution of high quality water, customer satisfaction, protection of the environment, workplace safety and cost effectiveness. We will continue to ensure our customers receive best value for the services we provide them.

1.2 Process Schematic - Rossdale (Plants 1 & 2)

1.3 Process Schematic - E. L. Smith (Plant 4)

EPCOR Incident Number	Description	Date of Incident	AESRD Report File Number
ENV- 20210209- 911344	On February 9, 2021, an EPCOR crew was pumping water out of a main break excavation into a nearby combined sewer. A hydraulic submersible pump attached to a backhoe experienced a fitting leak and then seized. The operator stopped the pump from his backhoe at that point. The EPCOR crew then noticed that some water mixed with oil had already been pumped out of the excavation at approximately 16:00 hrs. The event was reported to AEP on February 9, 2021 at 17:14 hrs. After the submersible pump seized, the excavation still contained water and hydraulic fluid. An environmental hydro vac was called in to remove the remaining water and hydraulic fluid from the excavation	February 9, 2021	375916
ENV- 20210622- 713017	On June 22, 2021 an EPCOR crew was excavating for a hydrant replacement. When they reached a depth of about six (6) feet they encountered a hydrocarbon odour. The work was then stopped and the worksite was evaluated the following day by EPCOR Water Canada's Hygienist. The excavated soil was stockpiled and tested and was then disposed of by a third party contractor into a Class 2 landfill offsite.	June 22, 2021	380502
ENV- 20210624- 513396	Related to ERS ENV-20210622-713017 and was about 15 feet away from the original excavation location.	June 24, 2021	380502

EPCOR Incident Number	Description	Date of Incident	AESRD Report File Number
ENV- 20210726- 036969	As part of recent routine flushing activities near Stony Plain Road and Connaught Drive, water distribution samples were collected (H1666 and H27088) and brought to the Rossdale Laboratory for regular turnaround testing. Laboratory results indicated detections of BTEX compounds in both pre- and post-flush samples, including MAC exceedances for benzene, resulting in a potential AEP reportable incident within Edmonton's water distribution system. Health Canada's Maximum Acceptable Concentration (MAC) for benzene is 5 µg/L and sample results were up to 7.16 µg/L. Given a MAC was exceeded in the sample, the AEP Action Protocol for Exceedances of Chemical Health Parameters in Drinking Water was followed and the finding was called into AEP's EDGE line (AEP Reference # 381700). An internal investigation was completed and the root cause of the MAC exceedance was the fact that vials/bottles used for sampling had been stored in a cabinet that formerly contained gasoline.	July 26, 2021	381700

EPCOR Incident Number	Description	Date of Incident	AESRD Report File Number
ENV- 20210827- 041339	On August 24, 2021 an EPCOR crew collected a random grab sample from hydrant H6299. On August 25, 2021 the laboratory results indicated that the sample from that hydrant failed for total coliforms. AEP was notified of these lab results on August 25, 2021. Following AEP's Communication and Action Protocol for Failed Bacteriological Results in Drinking Water (2009), EPCOR arranged to flush the water main and then took four (4) samples at 17:05 hrs on August 25, 2021. One (1) sample was from the failed hydrant (H6299), and three (3) samples were from other hydrants in the surrounding area. All sample points were flushed thoroughly prior to sampling. Note that in-field samples for chlorine and turbidity levels were within normal operating ranges at all sample locations. Results for the sample taken from H6299 tested positive for total coliforms for the second time. The other 3 samples taken outside of the isolated zone passed all lab sampling, indicating that there was no detectable coliform contamination present in the active water distribution network. AEP was notified on August 27, 2021 at 12:05 hrs of this second sample failure. On August 27, 2021 at 15:25 hrs, EPCOR flushed and resampled at the same four (4) locations. On August 28, 2021 at 08:39 hrs, hydrant H6299 was isolated from the distribution system and super chlorinated for 24 hours. On August 29, 2021 at 11:57 hrs. the EPCOR QA lab reported that all samples passed. Hydrant H6299 was recommissioned on August 29, 2021 at 12:12 hrs. It is likely that the original source of coliforms was isolated to hydrant 6299 since the samples taken from this hydrant, whereas three other hydrants produced passing samples were drawn from this hydrant, whereas three other hydrants produced passing samples from the same would have had	August 24, 2021	382862
	coliforms present.		
ENV- 20210825- 768742	As above (same incident) Second Total coliform positive failure from the same Hydrant (H6299)	August 25, 2021	382862

EPCOR Incident Number	Description	Date of Incident	AESRD Report File Number
ENV- 20210903- 801248-v1	This incident was a notification within Edmonton's Water Distribution system. A residential complaint sample related to taste and odour was collected and brought to EPCOR's QAE Water Laboratory. A series of water quality tests were conducted, including for metals. Analytical results indicated a lead concentration of 76.1 µg/L, which exceeds Health Canada's Maximum Acceptable Concentration (MAC) for lead (5 µg/L). Given a MAC was exceeded, we've followed AEP's Action Protocol for Exceedances of Chemical Health Parameters in Drinking Water and called the event into AEP's EDGE line (AEP Reference #383154). The concentration of lead was lower than AEP's 'One Day Short Term Exposure Limit' (100 µg/L) within the Chemical Exceedances Protocol. Given the address, the home is not in a lead service line area, so the likely source is lead is from internal plumbing fixtures. A Water Distribution and Transmission (Water D&T) crew was dispatched on September 2, 2021 to resample from within the home (downstairs bathroom). On September 3, additional samples were collected, one from the kitchen tap and one from a nearby hydrant (H7809). Results from all the resampling came back as below the MAC for lead. The hydrant sample confirmed the water quality within the distribution system was satisfactory. The additional in-home samples were also below the MAC and confirmed the kitchen tap as a source was satisfactory.	September 2, 2021	383154
ENV- 20210909- 739518	On September 9, 2021 an EPCOR contractor was excavating for a water main relocation project. During excavation, the contractor encountered a strong hydrocarbon odour. The work was then stopped and the EPCOR Construction Coordinator contacted a third party (Thurber Engineering) to take soil samples. On September 9, 2021, Thurber Engineering sampled hydrocarbon-impacted soil from six test pits that were excavated by EPCOR south of the Petro-Pass service station and in the northbound lane of 80 Avenue west of a service station. A composite soil sample was collected from the test pit locations for landfill characterization analyses. The results indicated that the soil can be disposed of at a class 2 landfill. The contaminated soil was removed and transported to a Class 2	September 9, 2021	383332

EPCOR Incident Number	Description	Date of Incident	AESRD Report File Number
	On September 14, 2021 at 13:13 hrs, an EPCOR crew collected a random grab sample from hydrant H18695 as part of EPCOR's random sampling program. On September 15, 2021 at 15:33 hrs, the laboratory results indicated that the sample from hydrant H18695 failed for total coliforms. AEP was notified of these lab results on September 15, 2021 at 16:23 hrs.		
ENV- 20210921- 372691	Following AEP's Communication and Action Protocol for Failed Bacteriological Results in Drinking Water (2009), EPCOR arranged to flush the water main and then took four (4) samples on September 15, 2021 at 21:30 hrs. Two (2) samples were from the failed hydrant (H18695) and two (2) samples were from other hydrants upstream and downstream of hydrant H18695. All sample points were flushed thoroughly prior to sampling. Note that in-field samples for chlorine and turbidity levels were within normal operating ranges at all sample locations.	September 14, 2021	383524
	On September 17, 2021 at 09:39 hrs, the EPCOR QA lab reported that all samples passed.		

EPCOR Incident Number	Description	Date of Incident	AESRD Report File Number
ENV- 20211007- 170297	 On October 6, 2021 at 11:31 hrs, an EPCOR crew sampled hydrant H5229 following a repair to this hydrant. On October 7, 2021 at 15:04 hrs, the laboratory results indicated that the sample from hydrant H5229 failed for total coliforms. AEP was notified of these lab results on October 7, 2021 at 15:19 hrs. Following AEP's Communication and Action Protocol for Failed Bacteriological Results in Drinking Water (2009), EPCOR arranged to flush the water main and then took four (4) samples at 21:30 hrs on October 7, 2021. One (1) sample was from the failed hydrant (H5229), and three (3) samples were taken from hydrants upstream and downstream of the original sample location. All sample points were flushed thoroughly prior to sampling. Following these samples, hydrant H5229 was isolated from the distribution network on October 7, 2021 at 19:54 hrs Results for the October 7, 2021 samples were available from the EPCOR QA lab on October 9, 2021 at 14:11 hrs. The sample taken from hydrant H5229 tested positive for total coliforms for the second time at a concentration of 1.0 organism /100mL. The other 3 samples taken outside of the isolated zone passed all lab tests, indicating that there was no detectable coliform contamination present in the active water distribution network. AEP was notified on October 9, 2021 at 14:11 hrs of the second sample failure. On October 9, 2021, EPCOR super chlorinated hydrant H5229 and on October 10, 2021 at 9:00 hrs, flushing followed by a second set of resamples was completed at the same four (4) hydrants and submitted to the EPCOR QA lab. Results were received on October 11, 2021 at 10:52 hrs. All samples passed for all parameters. Hydrant H5229 was recommissioned on October 11th. It is likely that the original source of coliforms was hydrant H5229. During the super chlorination of the hydrant, it was identified that the bleeders on the hydrant were plugged and that the stern was not fully tightened, so the hydrant were enclored nor the	October 6, 2021	Number 384365
	hydrant was super chlorinated and flushed.		

	ROSSDALE WATER TREATMENT PLANT	(LEVEL IV)				
	Director, Edmonton Water Treatment Plants					
	Senior Manager, Operations	WTII				
Employee Name	Title	Alberta Environment Certification				
	Operations Engineer	WTI				
	Manager, Operations	WT III, WWT III				
	Manager, Transmission Operations	WT III				
	Day Foreman	WT III				
	Operations Foreman	WT IV				
	HEI Foreman	WT IV				
	Operations Foreman	WT IV				
	Operations Foreman	WTIV				
	Operations Foreman	WTIV				
	Operations Foreman	WTIV				
	Transmission Foreman	WT III				
	Training Operator Foreman	WT III				
	Lead Hand, Operator	WT II				
	Operator I	WT III				
	Operator I	WT II				
	Lead Hand, Operator	WT II				
	Lead Hand, Operator	WT III				
	Operator I	WT II				
	Operator I	WT III				
	Lead Hand, Operator	WT IV, WD III, WWT II, WWC III				
	Operator I	WT II				
	Lead Hand, Operator	WT II				
	Operator I	WTII				
	Operator I	WT II, WD II, WWT II, WWC II				
	Operator I	WT II, WWT II				
	Operator I	WTII				
	Operator I	WTII				
	Operator I	WT III, WWT III				

	E.L. SMITH WATER TREATMENT PLAN	T (LEVEL IV)			
	Director, Edmonton Water Treatment Plants				
	Senior Manager, Operations	WT II			
Employee Name	Title	Alberta Environment			
	Operations Engineer				
	Manager, Operations	WT III, WWT III			
	Day Foreman	WT IV			
	HEI Foreman	WT IV			
	Training Operator Foreman	WT IV			
	Operations Foreman	WT IV			
	Operations Foreman	WT IV			
	Operations Foreman	WT III			
	Operations Foreman	WT IV			
	Operations Foreman	WT III			
	Lead Hand, Operator	WT III			
	Lead Hand, Operator	WT III			
	Lead Hand, Operator	WT III			
	Lead Hand, Operator	WT II			
	Lead Hand, Operator	WT IV			
	Operator I	WT III, WWT II,			
	Operator I	WT II			
	Operator I	WT II, WD II, WWT I, WWC I			
	Operator I	WT II			
	Operator I	WT II			
	Operator I	WT II			
	Operator I	WT IV			
	Operator I	WT III, WWT III			
	Operator I				

	DISTRIBUTION SYSTEM (LEVEL IV FACILITY)						
	Senior Manager, Maintenance and	IENANCE					
	Manager, Maintenance and Construction						
	Manager, Dist Maint Schedule						
Employee Name		Alberta Environment					
	Water Network Operator						
	Water Network Operator	WDIV					
	Foreman III	WDIII					
	Foreman III	WD II					
	Foreman III	WD III					
	Foreman III	WDIII					
	Foreman I	WDIII					
	Foreman I	WD II					
	Foreman I	WD III					
	Foreman I	WD II					
	Foreman I	WD II					
	Foreman I	WD II					
	Foreman I	WD II					
	Foreman I	WD II					
	Foreman I	WD II					
	Foreman I	WD III					
	Foreman I	WD II					
	Foreman I	WD II					
	Foreman I	WD IV					
	Equipment Operator III	WD II					
	Equipment Operator III	WD II					
	Equipment Operator III	WD I					
	Equipment Operator III	WD II					
	Equipment Operator III	WD II					
	Equipment Operator III	WD I					
	Equipment Operator III	WD I					
	Equipment Operator III	WD II					
	Equipment Operator III	WD II					
	Equipment Operator III	WD II					
	Equipment Operator III	WD II					
	Equipment Operator III	WD I					
	Equipment Operator III	WD II					
	Equipment Operator III	WD II					

	DISTRIBUTION SYSTEM (LEVEL IV FACILITY) WATER DISTRIBUTION (WD) - NETWORK MAINTENANCE				
	Senior Manager, Maintenance and				
	Manager, Maintenance and Construction Manager, Dist. Maint Schedule				
Employee Name	Title	Alberta Environment			
	Labourer II	WD I			
	Labourer II	WD I			
	Labourer II	WD I			
	Labourer II	WD I			
	Labourer III	WD II			
	Labourer II	WD I			

	DISTRIBUTION SYSTEM (LEVEL IV FAC	CILITY)
	WATER DISTRIBUTION (WD) - NETWORK MA	INTENANCE
	Senior Manager, Maintenance and	
	Manager, Maintenance and Construction	
	Manager, Dist. Maint Schedule	
Employee Name	Title	Alberta Environment Certification
	Labourer II	WD I
	Labourer II	WD I
	Labourer II	WD I
	Labourer II	WD II
	Labourer II	WD I
	Labourer II	WD I
	Labourer II	WD I
	Labourer II	WD II
	Labourer II	WD I
	Labourer II	WD II
	Truck Driver III	WD II
	Truck Driver III	WD II
	Truck Driver III	WD I
	Truck Driver III	WD I
	Truck Driver III	WD I
	Foreman III	WD III
	Welder	WD II
	Maintenance Repairman I	WD II
	Maintenance Repairman I	WD I
	Maintenance Repairman I	WD I
	Labourer III	WD I
	Labourer II	WD I
	Foreman I	WD I
	Water Sys Tech Support Specialist	WD II
	Water Sys Tech Support Specialist	WD IV

	DISTRIBUTION SYSTEM (LEVEL IN	/ FACILITY)				
	WATER DISTRIBUTION (WD) - FIELD	OPERATIONS				
	Senior Manager, Distribution Operations Manager, Field Operations					
	Manager, Metering and Preventative	WDI				
	Manager, Water Trouble	WD III				
Employee Name	Title	Alberta Environment Certification Level				
	Foreman III	WD IV				
	Foreman III	WD IV				
	Foreman I	WD II				
	Foreman I	WD II				
	Labourer III	WD II				
	Labourer III	WDI				
	Labourer III	WD II				
	Labourer III	WD II				
	Labourer III	WDI				
	Labourer III	WDI				
	Labourer III	WD III				
	Labourer II	WD I				
	Labourer II	WD II				
	Labourer II	WDI				
	Labourer II	WD I				
	Labourer III	WD I				
	Labourer II	WD II				
	Labourer II	WD I				
	Labourer III	WD I				
	Labourer II	WD II				

WATER DISTRIBUTION (WD) - CUSTOMER SERVICE					
	Senior Manager, Customer Service				
	Manager, Dispatch				
	Manager, Inspections and Customer Service				
mployee Name	Title	Alberta Environment			
	Team Lead, Dispatch	WD IV, WWC II, WT I, WWT I			
	Dispatcher Coordinator	WD I			
	Dispatcher Coordinator	WD I			
	Dispatcher Coordinator	WD II			
	Inspector – Water Metering	WD II			
	Inspector – Water Metering	WD I			
	Foreman III	WD III			
	Water Systems Serviceman	WD II			
	Water Systems Serviceman	WD II			
	Water Systems Serviceman	WD II			
	Water Systems Serviceman	WD II			
	Water Systems Serviceman	WD II			
	Water Systems Serviceman	WD III			
	Water Systems Serviceman	WD II			
	Water Systems Serviceman	WD III			
	Water Systems Serviceman	WD II			
	Water Systems Serviceman	WD II			
	Water Systems Serviceman	WD II			
	Labourer II	WD I			
	Labourer II	WD II			
	Manager, Cross Connections	WD II			
	Increase an antions				

DISTRIBUTION SYSTEM (LEVEL IV FACILITY) WATER METERING (WD)						
	Manager, Metering Operations	WD I				
Employee Name	Title	Alberta Environment				
	Foreman III	WD II				
	Meter Installer II	WD II				
	Meter Mechanic II	WD II				
	Meter Installer II	WD III				
	Meter Installer I	WD II				
	Meter Installer I	WD II				
	Meter Installer I	WD II				
	Meter Mechanic I	WD II				
	Meter Installer I	WD II				
	Meter Installer I	WD I				
	Meter Installer I	WD III				
	Meter Installer I	WD I				
	Meter Mechanic I	WD II				
	Meter Installer I	WD I				
	Meter Installer I	WD II				
	Meter Installer I	WD I				
	Meter Installer I	WD III				
	Meter Installer I	WDI				

1.6 Demand/Production Statistics (Estimated HLP Flow)

December 2021

	ROSSDALE ZONE		ZONE	E.L.SMITH ZONE		SYSTEM TOTAL			RESERVOIR PUMPAGE			
Month	Monthly Prod'n (ML)	Max Daily Prod'n (ML)	Peak Daily Demand (ML)	Monthly Prod'n (ML)	Max Daily Prod'n (ML)	Peak Daily Demand (ML)	Monthly Prod'n (ML)	Max Daily Prod'n (ML)	Peak Daily Demand (ML)	Rossdale Zone (ML)	E.L.Smith Zone (ML)	Total (ML)
JANUARY	3,493	126	160	6,825	240	243	10,317	356	341	993	2,480	3,473
FEBRUARY	3,481	143	228	6,129	260	266	9,610	392	355	1,050	2,289	3,339
MARCH	3,734	136	153	6,883	239	245	10,617	365	352	1,052	2,558	3,609
APRIL	3,879	142	167	6,514	244	242	10,392	377	375	1,055	2,527	3,582
MAY	4,248	184	214	7,271	286	322	11,519	470	465	1,382	2,880	4,262
JUNE	5,084	237	257	8,407	339	373	13,491	561	608	1,505	3,363	4,868
JULY	6,343	292	279	8,556	339	312	14,898	631	580	1,641	3,543	5,184
AUGUST	4,866	232	231	8,180	316	313	13,046	523	511	1,526	3,166	4,692
SEPTEMBER	4,293	192	199	6,902	275	305	11,195	451	412	1,384	2,894	4,278
OCTOBER	3,926	223	263	7,047	262	269	10,973	423	380	1,122	2,847	3,969
NOVEMBER	3,995	176	217	6,441	246	270	10,436	401	359	724	2,480	3,203
DECEMBER	4,504	169	201	6,214	226	253	10,718	390	360	854	2,505	3,359

2021 - HIGH 5-DAY DEMAND

	PLANTS PROD (ML/d)	RES. GAIN / LOSS (%)	RES. GAIN / LOSS (ML)	TOTAL DEMAND (ML)
27-Jun-2021	550	-1.3	-7.9	558
28-Jun-2021	561	-6.7	-41.9	602
29-Jun-2021	550	-8.8	-55.6	606
30-Jun-2021	552	-9.0	-56.5	608
01-Jul-2021	631	8.0	50.4	580
			AVERAGE:	591

Year to Date Data	2021	2020	% CHANGE
TOTAL PRODUCTION TO DATE (ML)	137,212	129,825	5.7
AVG. DAILY DEMAND TO DATE (ML)	376	355	6.0
PEAK DAILY DEMAND TO DATE (ML)	608	441	37.8
PEAK HOURLY DEMAND TO DATE (ML)	865	568	52.3
HIGH 5-DAY AVERAGE TO DATE (ML)	591	429	37.8

Peak daily demand of 608 ML/d occurred on June 30, 2021

Peak hourly demand of 865 ML/d occurred on June 28th at 20:00.

1.7 Energy Consumption and Usage

Energy Consumption

Power Consumption (kWh):

	2021	2020	Change %
Rossdale WTP	30,231,847	28,560,112	5.85%
E.L Smith WTP.	44,602,862	44,368,668	0.53%
Field Pump Stations	15,083,368	13,441,946	12.21%
TOTAL	89,918,078	86,370,726	4.11%

Gas Consumption (GJ):

	2021	2020	Change %
Plants	96,754	98,536	-1.81%
Pumping Stations	4,309	3,387	27.22%
TOTAL	101,062	101,923	-0.84%

<u>Water Production/Pumpage(ML):</u>

	2021	2020	Change %
Rossdale WTP	51,847	45,608	13.68%
E.L Smith WTP.	85,368	83,949	1.69%
Field Pump Stations	43,972	45,371	-3.08%
TOTAL	137,215	129,557	5.91%

Note: The reservoirs and booster stations are not included into these totals.

Energy Usage

	2021	2020
Energy Consumption for Treatment		
and Pumpage (kWh)	89,918,078	86,370,726
Energy in kW.h per ML pumped	665	667
Gas Consumption – All Facilities		
(GJ)	101,062	101,923
Gas Consumption – All Field Pump		
Stations (GJ)	4,309	3,387

1.8 Summary of Changes to the Operations Program

A summary of the significant changes to the 2022 Operations Program document from the previous year is as follows:

- 1. References to the now ended EnviroVista program have been removed, and throughout the document references to the Operating Approval have been update to the new approval received in May 2021 (00000638-04-00).
- 2. Section 1 Watershed Protection Program. EPCOR now is supporting the development of THREATS (The Healthy River Ecosystem AssessmenT System) which will amalgamate available water quality, quantity, and landuse/cover data into a publically available geospatial tool for the NSR watershed. In addition, the Total Loadings Strategy that is part of the Integrated Watershed Management Strategy will be updated in 2022.
- 3. Section 2.1 Treatment Process Overviews. Clarified that in the water treatment process downstream of UV disinfection, ammonium hydroxide is added at Rossdale, and ammonium sulfate at EL Smith.
- 4. Section 2.5.1.2 Communication to AEP and other sections of the document. The approvals engineer contact was updated from Mohammad M. Rahman to Fengqin Wang.
- Section 3.1.1 Water Supply Overview. Noted that there are now 14 pumping stations. As of December 17, 2021 that the Capital Region Parkland Water Service Commission (CRPWSC) portion of the Parkland Booster Station was acquired by EPCOR.
- 6. Section 4.2 Water Quality Monitoring Plan. Updated the algorithm for calculating the number of required routine bacteriological samples in the distribution system. It was updated based on based on the latest Statistics Canada municipal 2021 census assessment. The population within the City of Edmonton was 1,010,899, up 8.3% from the 2016 census. On April 1 the minimum number of samples required per month will be increased from 190 to 195.
- 7. Section 5.3.1 WTP Solids Residuals Reduction. EPCOR is working towards upgrading the stage one and stage two filters (1-12 out of 18) at the EL Smith WTP to deep bed filters. Pilot studies have shown that deep bed filters will allow EPCOR to operate in extended direct filtration operation reliably and at a higher throughput. EPCOR is also looking to explore opportunities to efficiently manage clarifiers and filters at EL Smith WTP by adopting right digitalization and artificial intelligence tools. Both of these initiatives are intended to reduce residuals
- 8. Section 6.2 Drinking Water Safety Plan (DWSP) Procedure. In the 2022 review of the DWSP, 2 new risks were identified. A focus for this review was to refresh the existing action plans associated with the risk register. Additionally risks were edited to include

more information under current monitoring and control, risk factor statements, causes or threats. There are currently 22 key risks in progress or new in our registry. There were no action plans that were fully completed and thus removed from the 2021 list. Finally, as per the 2020 Guidance Document for Managing Lead in Municipal Drinking Water Systems: Phase 1 (v1.3), lead risks were consider in the Customer and Network Risk portions of the DWSP and action plans were updated accordingly.

- Section 7 Edmonton Water Capital Program. Note the extension of the current Performant Based Rate (PBR) regulation from 2022 to 2026. The total approved capital expenditures for this new period is \$429 million. Updates terminology for capital projects to note that Project Sponsors are responsible for project delivery.
- 10. Operator Training and Certification. Updated the CEU requirements for operators as stipulated by Alberta Environment and Parks. Changes included a limit on allowable safety training towards certification, and that training must be discipline specific.

2.1 Storage Capacities of Reservoirs

Station	Available (ML)	Fire Storage (ML)	Operating Storage (ML)	Dead/ Emergency (ML)	Gross (ML)
Water Treatment P	lant Reservo	bir			
Rossdale Total	80.42	0.00	80.42	16.98	97.40
E.L. Smith Total	95.20	0.00	95.20	42.30	137.50
Sub Total	175.62	0.00	175.62	59.28	234.90
Field Reservoir					
Rosslyn	97.54	12.56	110.10	12.93	123.04
Clareview	50.51	2.95	53.46	11.14	64.60
Papaschase	66.80	9.71	76.51	5.63	82.14
Londonderry	39.10	2.58	41.68	3.56	45.24
North Jasper Place	29.74	4.66	34.40	11.66	46.06
Ormsby	37.41	2.99	40.40	4.87	45.27
Thorncliff	37.10	2.93	40.03	3.40	43.43
Kaskitayo	21.78	3.96	25.74	3.20	28.94
Mill Woods	46.98	5.92	52.90	3.33	56.23
Castle Downs	22.70	2.41	25.11	8.93	34.04
Discovery Park	5.01	1.22	6.23	0.70	7.10
Sub Total	454.67	51.89	506.56	69.35	576.09
Grand Total	630.29	51.89	682.18	128.63	810.99

		10					
		Current Alarms					
Treatment Plants Highlift Pump Stations	Elevation, m	LOLO	LO	н	ніні	Low Pressure SD	High Pressure Setpoints
ELS North	620.85	910	940	1080	1100		_
ELS South	620.85	910	940	1080	1100		
Rossdale West	622.25	800	830	950	980		
Rossdale South	622.25	800	830	950	980		
Reservoir Pumping Stations	Elevation, m	LOLO	LO	н	ніні	Low Pressure SD	High Pressure Setpoints
Rosslyn 1 Discharge	669.87	295	345	475	595		•
Rosslyn 2 Discharge	671.42	280	330	465	580		
Clareview Intake	649.73	365	410	640	670		
Clareview Discharge	648.95	500	530	620	640		
Papaschase 1 In/Disch	693.3	45	95	270	385		
Londonderry Intake	677.91	170	220	380	480		
Londonderry Discharge	670.21	400	450	500	525		535
Rosslyn 3 Discharge	669.14	510	540	630	700		610
Ormsby LE Discharge	679.38	525	575	680	710		
NJP Discharge	675.12	320	345	440	585		
Ormsby Primary Discharge	679.41	325	355	460	490		
Ormsby Intake	679.41	295	325	1000	1000		
Thorncliff Discharge	672.02	350	380	495	515		
Thorncliff Intake	672.02	310	340	480	500		
Castledowns Intake	678.96	230	260	400	430		

677.99

Castledowns Discharge

2.2 Pumping Station Operating Pressure Ranges

E

Kaskitayo Discharge	673.84	490	550	690	720		
Kaskitayo Intake	673.84	280	315	480	550		
Millwoods Discharge	678.83	490	520	620	650		
Millwoods Intake	678.82	220	250	400	430	60/140	
Papachase 2 Discharge	690.42	350	380	500	530		
Papachase 2 Intake	689.06	40	70	700	700		
Discovery Park Intake		350	400	460	510		
Discovery Park Discharge		280	330	470	520		
Booster Pumping Stations	Elevation, m	LOLO	LO	н	ніні	Low Pressure SD	High Pressure Setpoints
Parkland Intake	682.353	270	290	380	400		
Parkland Discharge 300mm	682.4	555	605	700			
Parkland Discharge 600mm	682.4	555	605	700			
Big Lake Intake	677.6					60/140	
Big Lake Discharge	677.6	315	365	475	625		
Terwillegar Discharge	683.00	440	480	650	690		
Terwillegar Intake	682.16	240	257	750	750	60/140	
Burnewood Discharge	695.05	520	550	610	640		
Burnewood Intake	695.05	210	240	700	700	60/140	
Laurel Intake		230	280	300	350	60/140	
Laurel Discharge		280	300	400	450		
Ellerslie Discharge	695.23	490	540	580	600		
Ellerslie Intake	695.2	250	280	500	540	60/140	
Walker Intake	723.6					60/140	
Walker Discharge	723.6	360	410	500	650		
Blackmud Creek Intake	690.104						
Blackmud Creek Discharge		630	680	830	880		
(End of Section)							

		Current Alarms			\$		
						Low	High
Firehall Stations	Elevation, m	LOLO	LO	HI	ніні	Pressure	Pressure
						SD	Setpoints
Fire Hall #1 (Headquarters)	661.759	310	360	550	700	N/A	N/A
Fire Hall #2 (Downtown)	667.018	270	320	495	645	N/A	N/A
Fire Hall #3 (University)	667.792	370	420	520	670	N/A	N/A
Fire Hall #5 (Norwood)	663.986	235	285	515	665	N/A	N/A
Fire Hall #6 (Mill Creek)	663.863	360	410	520	670	N/A	N/A
Fire Hall #7 (Highlands)	655.873	280	330	550	700	N/A	N/A
Fire Hall #8 (Hagman)	674.153	295	345	450	600	N/A	N/A
Fire Hall #9 (Roper Station)	693.967	240	290	460	610	N/A	N/A
Fire Hall #11 (Capilano)	665	260	310	475	625	N/A	N/A
Fire Hall #15 (Coronet)	675.232	285	335	470	625	N/A	N/A
Fire Hall 12 (Meadowlark)	673.546	250	300	445	595	N/A	N/A
Fire Hall 13 (Rainbow Valley)	669.812	285	335	515	665	N/A	N/A
Fire Hall #16 (Mill Woods)	693.516	260	310	430	580	N/A	N/A
Fire Hall #17 (Castledowns)	680.669	230	280	470	620	N/A	N/A
Fire Hall #20 (Kaskitayo)	679.57	230	280	430	580	N/A	N/A
Fire Hall #22 (Oliver)	668.561	230	280	520	670	N/A	N/A
Fire Hall #24 (Terwillegar)	686	265	315	450	600	N/A	N/A
Fire Hall #26 (Meadows)	712.5m	295	345	475	525	N/A	N/A
Firehall #27 (Ellerslie)	686	375	425	470	615	N/A	N/A
Fire Hall #28 (Heritage Valley)	695.408	290	300	400	550	N/A	N/A
Other City Pressure						Low	High
Monitoring Stations	Elevation, m	LOLO	LO	HI	HIHI	Pressure	Pressure
Monitoring Stations						SD	Setpoints
U of A #1 (Sask Dr)	669.63					N/A	N/A
U of A #2 (83 Ave)	670.762					N/A	N/A
U of A #3 (116st)		330	360	460	490	N/A	N/A
Sobeys	682	305	355	490	640	N/A	N/A
Northest Line		420	450	580	610	N/A	
Westview	696.7	320	340	500		N/A	N/A
HD Windermere	682.7	410	460	550	770	N/A	N/A
HD 17st	707.6	340	390	490	640	N/A	N/A
TAMS	assume 679.44	270	320	410	560	N/A	N/A
Clover Bar		300	350	540	590	N/A	N/A

2.3 Fire Stations & Other City Pressure Monitors

		Elevation	m T.	Head	kPa	
	LOCATION	m	Min.	Max.	Min.	Max.
#	Fire Hall					
1	10351 96 St.	661.759	703	722	400	540
2	10217 107 St.	667.018	708	717	400	490
3	11226 76 Ave.	667.792	708	717	395	485
5	9020 111 Ave.	663.986	708	717	430	520
6	8105 96 St.	663.863	708	717	430	520
7	5025 118 Ave.	655.873	705	713	480	560
8	12503 128 St.	674.153	708	713	330	410
9	5604 50 St.	693.967	730	740	350	455
11	6110 98 Ave.	664.07*	708	717	430	520
12	9020 156 St.	673.546	711	720	360	450
13	4035 119 St.	669.812	716	723	450	520
15	5120 97 St.	675.232	708	715	320	390
16	2940 66 St.	693.516	730	740	350	455
17	15505 Castledowns Rd.	680.669	715	740	340	585
20	2303 105 St.	679.57	713	720	325	395
22	10124 123 St.	668.561	708	716	385	465
24	131 Haddow Cl.	685*	717	730	305	430
26	2803 34 St.	712.5	742	766	295	525
27	1203 Ellwood Rd. SW	686	724	749	375	615
28	12110 26 Ave. SW	695	719	756	230	625
	Other City Points					
	Westview Village	696.7	729	742	320	450
	Sobeys 167 Ave 91 St	682*	720	735	370	520
	Home Depot 17 St	707.6*	748	757	400	480
	Home Depot Windermere	684*	730	742	400	660
	Clover Bar	731.87	803	762	300	700
	TAMS	750.14	778	807	270	560

2.3 Fire Stations & Other City Pressure Monitors

NOTE: 50 kPa ALLOWANCE FOR ALARM LIMITS AT MIN. and MAX. * appoximate elevation

	Elevation	Min	iimum		Normal	Range	
Customer	(m)	HGL	Pressure	HGL	Pressure	HGL	Pressure
		(m)	(kPa)	(m)	(kPa)	(m)	(kPa)
	Regional W	/ater Custo	omer Group*	•			
CRPWSC (Parkland)	682.353	708	250	712	290	715	320
Sturgeon County	692	717	240	723	304	723	354
Strathcona County	664.384	700	349	703	379	709	438
Morinville	662.65	698	383	702	422	707	471
St. Albert Sturgeon	685.173	703	175	707	214	712	263
St. Albert Oakmont	655.45	696	402	700	441	706	491
CRNWSC (Northeast)	643.05	691	470	696	519	702	578
CRSWSC (Southwest)**	716	755.7	390	759.8	430	766.4	495
Bulk Customers*							
Enoch Cree Nation	703.7	717	128	720	160	728	240
Namao	681.495	710	280	713	309	726	437

2.4 Regional Customers

*Based on Water Supply Agreements

**Point of Delivery: Discovery Parm Reservoir intake.

2.5	Pumping F	acilities
-----	-----------	-----------

		Number of Pumps													
Facilities	Year		Fixed	Variable	Maximum Design Discharge Flow by										
	Built	Total	Speed	Speed	Fump (ML/d)										
Water Treatment Plants H	lighlift Pu	mp Statio	ns												
Rossdale Plant	1947	6	4	2	4 @ 100, 2 @ 105										
E.L. Smith Plant	1976	4	2	2	2 @ 95, 2 @ 205										
Field Reservoir & Booster	r Pump St	ations													
	Claraviaw 1070 2 4 0 0 00														
Clareview 1979 3 1 2 1 @ 14, 2 @ 30 Possive 1 1955 3 3 0 3 @ 30															
Rosslyn 1	1955	3	3	0	3 @ 20										
Rosslyn 2	1969	1	1	0	1 @ 22										
North Jasper Place	1974	4	3	1	2 @ 13, 2 @ 26										
Thorncliff	1970	3	3	0	3 @ 12										
Ormsby	1969	3	2	1*	2 @ 16, 1@ 32										
Papaschase 1	1976/82	2	2	0	2 @ 20										
		North	Seconda	ary Zone											
Londonderry	1974/79	3	1	2	2 @ 15, 1 @ 21										
Castledowns	1979	3	1	2	3 @ 17										
Rosslyn 3	1963	3	3**	0	2 @ 26; 1@18										
	W	est Secor	ndary & B	ig Lake Z	ones										
Parkland Booster St.	1973	5	3	2	1 @ 2, 1 @ 4, 1 @ 10, 1 @ 14, 1 @ 25										
Ormsby, Lewis Estates	1969	3	0	3	1 @ 20, 1@ 15, 1 @ 5										
Big Lake Booster St.	2016	5	0	5	2 @ 8, 2 @ 25, 1 @ 34										
		South	n Second	ary Zone											
Papaschase 2	1968/71	3	2	1	2 @ 13, 1 @ 23										
Mill Woods	1977	6	3	2	3 @ 16, 1 @ 24, 1 @ 32, 1 @ 18										
Kaskitayo	1980	5	3	2	3 @ 10, 2 @ 15										
Terwillegar Booster St.	1998	3	2	1	3 @ 17										
		Sou	th Tertiar	y Zone											
Burnewood Booster St.	1985	4	2	2	3 @ 19, 1 @ 14										
Ellerslie Booster St.	2007	2	0	2	2@6										
Laurel Booster St.	2018	2	0	2	2@2										
Blackmud Creek Booster S	1982	3	0	3	1@17, 1@34, 1@2.6										
Discovery Park	2020	5	0	5	1@1.12,2@2.68,2@11.2										
	South Quaternary Zone														
Walker Booster St.	2015	5	0	5	2 @ 2, 2 @ 7, 1@ 17										
TOTAL		88	38	45											

*Ormsby Pump #3 can be used to support Primary Pressure Zone or West Secondary Pressure Zone depending on the discharge header valve configuation. The totals include this pump once.

2.6 Production Summary

Water Production	2021	2020	2019
Treated and Pumped into the System	137,214	129,825	130,166
Water Treated at Rossdale Plants	51,848	45,877	43,172
Water Treated at E. L. Smith Plant	85,366	83,948	86,994
Supplied to Residential Customers	69,534	66,604	62,370
Supplied to Commercial/Industrial Customers	22,342	21,407	26,133
Supplied to Suburban Customers	37,659	33,610	33,970
Percentage Accounted for from:			
Metered & Bulk Sources	94%	94%	95%
Assumed System Leakage	6%	6%	5%
Average Day Pumpage (ML)	376	355	357
Peak Day Demand (ML)	608	441	489

Population Served	2021	2020	2019
Approximate Population Served (City)	1,057,181	1,047,003	972,223
Approximate Population Served (Region)	359,000	354,000	349,000
Approximate Population Served (Total)	1,416,181	1,401,003	1,321,223

Per Capita Consumption (L/cap)	2021	2020	2019
Average Day Demand	265	253	270
Peak Day Demand	429	315	370

2.7 Raw Water Intake (ML)

2021

					Rosso	lale					E.	Plants			
Month		PI	ant 1			PI	lant 2		Blant Total	Min	Max	Ava	Plant Total	Combined Total	
	Min	Max	Avg	Total	Min	Мах	Avg	Total	Fidili Totai	IVIIII	WIAX	Avy	Fidili Toldi	Total	
January	49	60	53	1,628	66	80	72	2,220	3,848	136	281	257	7,955	11,803	
February	21	59	51	1,439	27	99	84	2,351	3,790	51	301	264	7,385	11,175	
March	45	58	54	1,671	57	88	78	2,420	4,092	248	281	266	8,254	12,345	
April	50	60	56	1,667	70	96	85	2,549	4,216	135	281	262	7,852	12,068	
May	34	75	57	1,716	0.0	115	97	2,999	4,715	74	341	282	8,751	13,466	
June	50	92	68	2,039	76	163	117	3,501	5,540	260	386	323	9,704	15,245	
July	50	125	77	2,374	78	175	138	4,268	6,642	246	381	312	9,669	16,311	
August	55	125	93	2,881	0.0	120	74	2,304	5,185	113	354	297	9,204	14,389	
September	0.0	86	27	807	2.5	173	127	3,796	4,603	118	320	269	8,070	12,673	
October	12	119	77	2,392	0.0	170	61	1,883	4,275	5.0	301	266	8,257	12,532	
November	29	65	53	1,601	42	120	94	2,832	4,432	31	301	270	8,101	12,533	
December	25	60	58	1,806	42	121	99	3,076	4,882	74	273	238	7,385	12,267	
Annual Total				22,022				34,198	56,219				100,589	156,808	
Annual Min/Max/Avg	al 0.0 125 60			0.0	175	94			5.0	386	276				

2.8 Treated Water Production (ML)

	Ros	sdale (Pla	nt 1 & Plar	nt 2)				E.L. \$	Smith				Plants Co	mbined
Month		Flow I	Veters			Flow I	Neters		Est	timated (H	lighlift Fl	ow)	Ava	Total
	Min	Мах	Avg	Total	Min	Max	Avg	Total	Min	Max	Avg	Total	Avg	Total
January	33	210	113	3,492	0.0	295	216	6,686	0.0	301	220	6,824	333	10,317
February	0.0	207	124	3,481	0.0	305	215	6,018	0.0	473	219	6,129	343	9,609
March	0.0	209	120	3,733	0.0	299	218	6,756	0.0	305	222	6,884	342	10,617
April	0.0	209	129	3,879	0.0	299	213	6,396	0.0	305	217	6,513	346	10,393
May	0.0	212	137	4,248	0.0	337	231	7,169	0.0	344	235	7,271	372	11,519
June	0.1	300	169	5,085	192	374	279	8,367	195	381	280	8,407	450	13,492
July	0.0	304	205	6,343	194	376	275	8,513	198	383	276	8,556	481	14,899
August	0.0	301	157	4,867	0.0	351	262	8,121	0.0	358	264	8,180	421	13,047
September	0.0	246	143	4,293	0.0	317	228	6,847	0.0	333	230	6,902	373	11,194
October	0.0	290	127	3,926	0.0	287	225	6,961	0.0	467	227	7,047	354	10,973
November	0.0	205	133	3,995	0.0	288	211	6,339	0.0	294	215	6,441	348	10,436
December	2.3	206	145	4,505	0.0	263	204	6,338	0.0	271	200	6,214	346	10,719
Annual Total				51,848				84,511				85,366		137,214
Annual Min/Max/Avg	0.0	304	142		0.0	376	232		0.0	473	234		376	

2021	
------	--

NOTES: ' -- ' indicates plant offline

Estimated flows are based on UV effluent flow meters to address inaccuracy of highlift flow meters.
As of July 1, 2009, plants combined data is the sum of Rossdale flow meters and E.L. Smith estimated flow data.

3.1 Raw Water Quality - North Saskatchewan River

2021

					Rossdale	•				E.L. Smith										
Month	Tu	rbidity (N	TU)		рН		с	Colour (TCU)			rbidity (N	TU)		pН		Colour (TCU)				
	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg		
January	1.3	2.0	1.6	8.0	8.2	8.1	2.0	6.9	4.5	1.2	2.3	1.7	8.0	8.2	8.1	3.5	6.3	4.8		
February	1.5	13	2.3	8.0	8.2	8.1	4.1	7.5	5.7	1.4	5.5	2.3	7.9	8.2	8.0	4.5	7.7	6.0		
March	1.8	7.1	3.6	7.9	8.2	8.1	3.6	14.6	8.0	1.9	7.3	3.2	7.9	8.2	8.0	4.5	14.1	7.6		
April	2.0	100	19	8.1	8.4	8.2	2.8	5.2	3.7	2.3	120	26	7.9	8.3	8.1	2.6	6.3	3.9		
Мау	5.7	160	24	8.1	8.4	8.3	2.7	31.0	11.9	6.8	170	28	8.1	8.4	8.3	2.9	31.8	12.5		
June	7.2	240	35	8.2	8.7	8.3	4.7	23.3	11.1	3.8	270	45	8.0	8.5	8.3	6.2	23.8	12.0		
July	2.4	120	11	8.2	8.5	8.4	2.1	9.3	4.7	4.3	170	14	8.1	8.5	8.4	2.4	9.1	5.4		
August	1.8	8.8	3.2	8.2	8.4	8.4	1.7	5.2	2.8	3.3	19	5.5	8.1	8.5	8.3	1.5	5.5	3.0		
September	2.0	32	5.8	8.2	8.4	8.4	2.8	12.5	4.6	2.6	39	7.6	8.1	8.4	8.3	2.3	12.3	4.7		
October	1.6	17	2.9	8.2	8.4	8.3	2.5	4.4	3.1	1.9	25	3.4	7.9	8.4	8.2	1.7	4.8	3.1		
November	2.2	21	4.1	8.1	8.2	8.2	2.1	3.3	2.7	2.5	28	4.6	8.0	8.3	8.2	1.9	4.7	2.9		
December	1.3	6.8	2.8	7.8	8.2	8.1	2.2	5.7	2.8	1.4	8.0	3.0	7.9	8.3	8.1	2.0	5.6	2.8		
Annual Min/Max/Avg	1.3	240	9.7	7.8	8.7	8.2	1.7	31.0	5.5	1.2	270	12	7.9	8.5	8.2	1.5	31.8	5.7		

NOTES: ' -- ' indicates plant offline

3.2 Treated Water Quality Entering the Distribution System

2021

	Rossdale													E.L. Smith														
Month	T	urbidit (NTU)	y	Ch Resi	loram dual (i	ine ng/L)		pН		F Res	luorid idual (r	e ng/L)	Total Hardness (mg/L as CaC0₃)	Colour (TCU)	Т	Turbidity (NTU)		Chloramine Residual (mg/L)			рН			Fluoride Residual (mg/L)			Total Hardness (mg/L as CaC0₃)	Colour (TCU)
	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Avg	Avg	Min	Мах	Avg	Min	Мах	Avg	Min	Мах	Avg	Min	Мах	Avg	Avg	Avg
January	0.03	0.08	0.06	1.90	2.26	2.06	8.0	8.2	8.1	0.63	0.77	0.71	185	0.8	0.04	0.07	0.04	1.83	2.08	1.93	7.7	8.1	8.0	0.65	0.81	0.77	182	1.1
February	0.03	0.08	0.06	1.90	2.32	2.09	8.0	8.2	8.1	0.60	0.81	0.74	191	1.1	0.04	0.07	0.04	1.83	2.11	1.94	7.8	8.1	7.9	0.64	0.86	0.73	187	1.3
March	0.02	0.08	0.04	1.90	2.36	2.09	7.7	8.1	8.0	0.66	0.79	0.72	178	0.9	0.04	0.04	0.04	1.81	2.08	1.97	7.5	8.2	7.8	0.63	0.70	0.66	176	0.9
April	0.02	0.08	0.04	1.90	2.36	2.04	7.3	8.0	7.9	0.67	0.77	0.73	164	0.4	0.03	0.07	0.04	1.90	2.06	1.96	7.6	8.1	7.9	0.63	0.79	0.67	163	0.7
May	0.02	0.13	0.06	1.80	2.26	2.03	7.6	7.9	7.8	0.62	0.80	0.72	174	0.7	0.04	0.05	0.04	1.81	2.22	1.98	7.5	8.0	7.8	0.61	0.70	0.65	174	0.9
June	0.03	0.11	0.06	1.80	2.52	2.06	7.7	8.2	7.8	0.60	0.84	0.72	178	0.6	0.04	0.05	0.05	1.88	2.08	1.97	7.4	7.8	7.7	0.64	0.79	0.70	178	1.0
July	0.04	0.16	0.06	1.70	2.26	1.99	7.7	8.0	7.9	0.58	0.84	0.71	170	0.4	0.04	0.06	0.05	1.82	2.12	1.96	7.6	7.8	7.7	0.65	0.81	0.75	170	0.6
August	0.04	0.11	0.06	1.80	2.36	2.08	7.8	8.0	7.9	0.62	0.78	0.72	148	0.2	0.04	0.07	0.04	1.81	2.22	2.08	7.6	8.1	7.7	0.53	0.75	0.65	149	0.5
September	0.04	0.10	0.05	1.90	2.20	2.07	7.6	8.0	7.8	0.65	0.80	0.73	155	0.4	0.04	0.06	0.05	1.84	2.11	1.99	7.5	8.0	7.7	0.64	0.79	0.72	156	0.5
October	0.04	0.10	0.05	1.90	2.21	2.07	7.6	8.0	7.8	0.52	0.78	0.71	164	0.4	0.04	0.06	0.05	1.88	2.11	1.98	7.7	7.8	7.7	0.65	0.81	0.75	163	0.4
November	0.04	0.08	0.06	1.90	2.26	2.07	7.6	8.2	8.0	0.60	0.80	0.73	165	0.6	0.05	0.12	0.06	1.89	2.12	2.01	7.4	7.9	7.7	0.62	0.76	0.71	164	0.6
December	0.04	0.08	0.06	1.90	2.16	2.05	7.8	8.0	7.9	0.69	0.80	0.77	173	0.5	0.05	0.08	0.06	1.88	2.08	1.95	7.5	7.8	7.7	0.72	0.81	0.77	172	0.6
Annual Min/Max/ Avg	0.02	0.16	0.05	1.70	2.52	2.06	7.3	8.2	7.9	0.52	0.84	0.73	170	0.6	0.03	0.12	0.05	1.81	2.22	1.98	7.4	8.2	7.8	0.53	0.86	0.71	169	0.7

NOTES: ' -- ' indicates plant offline

<u>3.2 - 1</u> Treated Water Quality Entering the Distribution System

· · · · · · · · · · · · · · · · · · ·																					
					Rossda	ale								E.L Sm	ith						
Month	Tem	perature	e (°C)		рН		Hourly	Flow (ML	per day)	Ten	nperature	e (°C)		рН		Hourly	Flow (ML p	per day)			
	Min Max Avg Min Max				Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg			
June	14.4	26.5	19.3	7.7	8.2	7.8	0	290	170	13.9	25.9	18.8	7.4	7.8	7.7	197	378	284			
July	18.3	26.6	22.1	7.7	8.0	7.9	76	303	205	18.2	26.0	21.6	7.6	7.8	7.7	201	382	280			
August	14.3	23.2	19.3	7.8	8.0	7.9	0	292	157	13.9	22.5	18.7	7.6	8.1	7.7	0	356	268			
September	11.9	17.0	14.5	7.6	8.0	7.8	0	240	143	11.6	17.0	14.1	7.5	8.0	7.7	0	318	233			
October	4.3	12.9	7.5	7.6	8.0	7.8	0	275	127	4.1	13.2	7.3	7.7	7.8	7.7	0	291	228			
November	0.5	3.2	0.9	7.6	8.2	8.0	0	203	133	0.7	1.0	1.1	7.4	7.9	7.7	0	289	215			
December	0.5	1.3	0.5	7.8	8.2	7.9	0	205	145	0.4	0.9	0.7	7.5	7.8	7.7	0	251	205			
Annual	0.5	26.6	12.0	76	0 7	7.0	0	202	164	0.4	26.0	11 0	74	0 1	77	0	202	245			
Min/Max/Avg	0.5	20.0	12.0	7.0	0.2	7.9	0	503	154	0.4	20.0	11.8	7.4	0.1	7.7	U	382	245			

3.3 Rossdale Filters 1 - 9 Particle Counts (no./mL >2um)

2021

Filter		1			2			3			4			5			6			7			8			9	
Month	Min	Max	Avg																								
January	1	33	2	1	26	3	1	40	2	1	32	4	1	23	3	3	28	8	1	27	4	3	35	8	1	25	6
February	1	44	4	1	44	3	1	24	2	1	38	5	1	24	4	2	41	10	1	43	4	3	39	8			
March	1	45	3	1	22	2	1	29	1	1	36	3	1	29	3	1	28	11	1	30	3	3	34	8			
April	1	27	4	1	34	3	1	24	2	1	32	5	1	30	4	1	30	7	1	33	5	1	45	9			
May	1	45	9	1	43	8	1	36	6	1	43	8	1	38	8	1	41	7	1	44	10	1	45	9			
June	1	44	5	1	29	2	1	19	2	1	45	2	1	20	2	1	12	1	1	23	2	1	44	1			
July	1	27	2	1	29	2	1	38	2	1	23	3	1	23	2	1	25	2	1	26	2	1	40	3	1	24	2
August	1	43	1	1	34	2	1	34	3	1	34	5	1	39	2	1	37	2	1	26	2	1	16	1	1	15	1
September	1	42	4	1	27	3	1	28	4	1	29	5	1	34	4	1	27	4	1	31	5	1	23	3	1	22	3
October	1	43	2	1	29	3	1	42	2	1	41	2	1	32	3	1	26	2	1	26	5	1	28	2	1	40	2
November	1	42	4	1	44	3	1	41	4	1	44	4	1	47	5	1	33	3	1	43	8	1	24	3	1	45	5
December	1	24	3	1	39	2	1	34	2	1	36	2	1	43	4	1	44	3	1	36	9	1	27	2	1	24	3
Annual Min/Max/Avg	1	45	4	1	44	3	1	42	3	1	45	4	1	47	4	1	44	5	1	44	5	1	45	5	1	45	3

NOTE: ' -- ' indicates filter offline

3.4 E.L. Smith Filters 1 - 9 Particle Counts (no./mL >2um)

2021

Filter		1			2			3			4			5			6			7			8			9	
Month	Min	Max	Avg																								
January	3	32	17	1	44	5				1	33	4	1	31	3	1	44	5	1	30	5	1	35	4	1	35	5
February	9	36	16							1	33	4	1	26	2	1	44	8	1	45	7	1	36	6	1	44	8
March	9	34	16	1	32	2				1	32	2	1	30	2	1	44	3	1	29	4	1	29	3	1	35	3
April	5	40	20	1	32	5				1	33	5	1	33	5	1	33	5	1	37	7	1	32	6	1	36	6
Мау	1	45	13	1	36	7				1	38	7	1	35	7	1	38	8	1	45	10	1	40	9	1	45	9
June	1	40	7	1	33	5	1	44	8	1	39	5	1	35	5	1	36	6	1	42	9	1	32	8	1	37	7
July				1	37	5	1	24	5	1	45	5	1	25	5	1	32	6	1	43	8	1	38	7	1	42	6
August				1	26	5	1	43	5	1	29	6	1	33	5	1	32	6	1	39	7	1	34	6	1	27	6
September				1	36	7	1	37	7	1	45	6	1	37	7	1	35	6	1	44	9	1	39	8	1	44	8
October				1	33	5	1	35	5	1	41	5	1	37	5	1	38	6	1	41	8	1	34	7	1	39	8
November							1	42	7	1	35	6	1	25	6	1	32	7	1	43	9	1	36	8	1	32	7
December							1	25	3	1	29	3	1	27	3	1	37	5	1	31	4	1	35	4	1	31	4
Annual Min/Max/Avg	1	45	15	1	44	6	1	44	6	1	45	5	1	37	5	1	44	6	1	45	7	1	40	6	1	45	6

NOTE: ' -- ' indicates filter offline

3.5 E.L. Smith Filters 10 - 18 Particle Counts (no./mL >2um)

2021

Filter		10			11			12			13			14			15			16			17			18	
Month	Min	Max	Avg																								
January	2	45	10	1	22	4	1	33	6	2	45	9	1	32	5	2	45	8	1	45	6	1	45	7	1	45	6
February	1	45	12	1	44	6	1	44	9	2	45	10	1	45	6	1	45	8	1	44	7	1	45	8	1	45	7
March	1	45	4	1	25	3	1	30	4	1	45	5	1	41	4	1	44	5	1	42	3	1	45	3	1	44	4
April	1	34	6	1	29	6	1	34	7	1	43	7	1	35	7	1	41	7	1	35	5	1	33	5	1	28	5
May	1	37	9	1	43	8	1	45	10	1	41	10	1	39	11	1	41	10	1	38	7	1	41	8	1	42	8
June	1	30	8	1	34	7	1	40	8	1	43	8	1	40	8	1	44	8	1	35	6	1	35	6	1	32	6
July	1	44	6	1	27	6	1	40	7	1	44	7	1	36	7	1	38	7	1	30	5	1	41	6	1	42	6
August	1	41	6	1	31	6	1	44	6	1	40	8	1	35	6	1	43	6	1	44	4	1	35	5	1	31	4
September	1	41	8	1	42	9	1	43	9	3	40	13	1	41	9	1	39	8	1	35	6	1	38	7	1	44	6
October	1	45	8	1	34	7	1	36	8	3	44	15	1	38	9	1	45	8	1	38	6	1	26	7	1	34	7
November	1	40	8	1	41	7	1	40	8	5	36	18	1	36	8	1	39	9	1	36	7	1	28	7	1	42	6
December	1	44	6	1	38	4	1	36	5	3	43	16	1	29	4	1	26	5	1	45	5	1	36	4	1	33	4
Annual Min/Max/Avg	1	45	8	1	44	6	1	45	7	1	45	10	1	45	7	1	45	7	1	45	6	1	45	6	1	45	6

NOTES: ' -- ' indicates filter offline

3.6 Rossdale Filters 1 - 9 Turbidity (NTU)

2021

Filter		1			2			3			4			5			6			7			8			9	
Month	Min	Max	Avg																								
January	0.01	0.10	0.03	0.01	0.08	0.04	0.00	0.07	0.02	0.01	0.09	0.03	0.00	0.09	0.05	0.01	0.07	0.02	0.02	0.10	0.04	0.01	0.09	0.04	0.01	0.08	0.04
February	0.02	0.08	0.03	0.03	0.08	0.04	0.01	0.08	0.02	0.02	0.08	0.03	0.02	0.08	0.05	0.01	0.08	0.02	0.03	0.08	0.04	0.01	0.08	0.04			
March	0.01	0.07	0.02	0.02	0.07	0.03	0.01	0.07	0.02	0.02	0.08	0.03	0.02	0.07	0.03	0.01	0.06	0.02	0.03	0.08	0.03	0.01	0.07	0.02			
April	0.01	0.06	0.02	0.02	0.06	0.03	0.01	0.08	0.01	0.01	0.07	0.02	0.02	0.08	0.02	0.01	0.06	0.01	0.02	0.06	0.03	0.01	0.06	0.02			
May	0.01	0.07	0.03	0.02	0.08	0.03	0.01	0.08	0.02	0.01	0.08	0.02	0.02	0.08	0.03	0.01	0.08	0.02	0.03	0.08	0.03	0.01	0.08	0.03			
June	0.01	0.07	0.03	0.02	0.08	0.03	0.01	0.05	0.02	0.01	0.07	0.02	0.02	0.06	0.03	0.01	0.05	0.02	0.02	0.07	0.03	0.01	0.06	0.03			
July	0.01	0.06	0.02	0.02	0.07	0.03	0.01	0.06	0.01	0.01	0.07	0.02	0.02	0.08	0.02	0.01	0.08	0.01	0.02	0.06	0.03	0.01	0.05	0.02	0.02	0.06	0.02
August	0.02	0.08	0.02	0.02	0.05	0.03	0.00	0.08	0.01	0.01	0.05	0.01	0.01	0.05	0.02	0.01	0.07	0.01	0.02	0.05	0.03	0.01	0.07	0.02	0.02	0.05	0.02
September	0.02	0.07	0.03	0.02	0.07	0.03	0.01	0.06	0.02	0.01	0.08	0.02	0.02	0.06	0.02	0.01	0.05	0.01	0.02	0.06	0.03	0.01	0.06	0.02	0.02	0.06	0.02
October	0.02	0.07	0.03	0.02	0.06	0.03	0.01	0.06	0.01	0.01	0.07	0.02	0.01	0.07	0.02	0.00	0.05	0.01	0.02	0.06	0.03	0.01	0.06	0.02	0.02	0.06	0.02
November	0.02	0.08	0.03	0.02	0.08	0.03	0.01	0.08	0.02	0.01	0.08	0.02	0.02	0.08	0.03	0.01	0.08	0.02	0.02	0.08	0.03	0.01	0.08	0.03	0.02	0.09	0.03
December	0.02	0.08	0.04	0.02	0.08	0.03	0.01	0.08	0.02	0.01	0.08	0.03	0.02	0.08	0.03	0.01	0.08	0.02	0.03	0.08	0.04	0.01	0.08	0.03	0.02	0.08	0.03
Annual Min/Max/Avg	0.01	0.10	0.03	0.01	0.08	0.03	0.00	0.08	0.02	0.01	0.09	0.02	0.00	0.09	0.03	0.01	0.08	0.02	0.02	0.10	0.03	0.01	0.09	0.03	0.01	0.09	0.03

NOTES: ' -- ' indicates filter offline

3.7 E.L. Smith Filters 1 - 9 Turbidity (NTU)

2021

Filter		1	_		2			3			4	_		5			6	_		7			8	_		9	
Month	Min	Max	Avg																								
January	0.02	0.09	0.03	0.01	0.06	0.01				0.01	0.08	0.02	0.02	0.09	0.03	0.01	0.10	0.02	0.02	0.09	0.03	0.03	0.10	0.05	0.02	0.09	0.03
February	0.02	0.09	0.03							0.01	0.08	0.02	0.02	0.09	0.03	0.01	0.08	0.02	0.02	0.09	0.03	0.03	0.09	0.05	0.02	0.10	0.03
March	0.02	0.07	0.03	0.00	0.08	0.01				0.00	0.07	0.01	0.01	0.07	0.02	0.01	0.07	0.02	0.02	0.08	0.03	0.03	0.08	0.04	0.01	0.08	0.02
April	0.02	0.07	0.02	0.01	0.08	0.01				0.00	0.07	0.01	0.01	0.08	0.02	0.01	0.07	0.02	0.01	0.08	0.03	0.03	0.08	0.04	0.01	0.08	0.02
May	0.02	0.08	0.03	0.02	0.08	0.03				0.01	0.08	0.02	0.01	0.08	0.02	0.01	0.08	0.02	0.01	0.08	0.03	0.02	0.08	0.04	0.01	0.08	0.02
June	0.02	0.08	0.03	0.02	0.08	0.03	0.01	0.08	0.03	0.01	0.08	0.03	0.01	0.08	0.02	0.01	0.07	0.02	0.02	0.08	0.03	0.02	0.08	0.04	0.01	0.08	0.02
July				0.02	0.07	0.03	0.01	0.08	0.02	0.02	0.08	0.03	0.01	0.07	0.02	0.01	0.07	0.02	0.01	0.08	0.03	0.03	0.08	0.04	0.01	0.07	0.02
August				0.01	0.06	0.03	0.01	0.08	0.02	0.01	0.06	0.02	0.01	0.07	0.02	0.01	0.05	0.01	0.01	0.06	0.02	0.02	0.08	0.03	0.01	0.08	0.01
September				0.02	0.08	0.04	0.02	0.08	0.02	0.01	0.07	0.02	0.01	0.08	0.02	0.01	0.08	0.02	0.01	0.07	0.02	0.03	0.08	0.04	0.01	0.07	0.02
October				0.03	0.07	0.03	0.02	0.07	0.02	0.02	0.08	0.03	0.01	0.07	0.02	0.01	0.07	0.02	0.01	0.08	0.02	0.03	0.08	0.04	0.01	0.08	0.02
November							0.02	0.07	0.03	0.02	0.08	0.03	0.01	0.08	0.02	0.01	0.08	0.02	0.01	0.08	0.03	0.03	0.08	0.04	0.01	0.08	0.02
December							0.02	0.08	0.03	0.02	0.09	0.03	0.01	0.09	0.02	0.01	0.09	0.02	0.01	0.09	0.02	0.03	0.09	0.04	0.01	0.09	0.02
Annual Min/Max/Avg	0.02	0.09	0.03	0.01	0.08	0.03	0.01	0.08	0.03	0.00	0.09	0.02	0.01	0.09	0.02	0.01	0.10	0.02	0.01	0.09	0.03	0.02	0.10	0.04	0.01	0.10	0.02

NOTES: '--' indicates filter offline

3.8	E.L. Smith	Filters	10 -	18 1	Furbidity	(NTU)
-----	------------	---------	------	------	-----------	-------

2021

Filter		10			11			12			13			14			15			16			17			18	
Month	Min	Max	Avg																								
January	0.02	0.10	0.03	0.03	0.09	0.04	0.02	0.07	0.03	0.04	0.09	0.05	0.03	0.09	0.04	0.03	0.09	0.04	0.03	0.09	0.04	0.02	0.09	0.04	0.02	0.09	0.04
February	0.01	0.08	0.02	0.03	0.09	0.04	0.02	0.07	0.03	0.04	0.09	0.05	0.03	0.09	0.04	0.03	0.09	0.04	0.03	0.09	0.04	0.03	0.09	0.04	0.03	0.09	0.04
March	0.01	0.05	0.01	0.02	0.08	0.04	0.02	0.08	0.02	0.04	0.08	0.05	0.03	0.08	0.04	0.03	0.08	0.03	0.03	0.08	0.04	0.03	0.08	0.03	0.02	0.08	0.04
April	0.00	0.08	0.01	0.02	0.08	0.04	0.02	0.08	0.03	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.02	0.08	0.04	0.02	0.08	0.04	0.03	0.08	0.04
May	0.01	0.07	0.01	0.03	0.08	0.04	0.02	0.08	0.03	0.03	0.08	0.03	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04
June	0.00	0.08	0.03	0.02	0.08	0.04	0.02	0.08	0.03	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.02	0.08	0.04	0.03	0.08	0.04
July	0.02	0.08	0.03	0.03	0.08	0.04	0.02	0.07	0.03	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.02	0.08	0.04	0.02	0.08	0.04	0.03	0.08	0.04
August	0.02	0.07	0.03	0.02	0.07	0.03	0.02	0.05	0.02	0.03	0.06	0.03	0.03	0.07	0.03	0.03	0.07	0.03	0.03	0.07	0.03	0.02	0.07	0.03	0.03	0.07	0.03
September	0.02	0.07	0.03	0.00	0.08	0.02	0.02	0.08	0.03	0.03	0.06	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.04	0.08	0.04
October	0.02	0.08	0.04	0.00	0.08	0.02	0.02	0.08	0.03	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.05
November	0.03	0.08	0.05	0.01	0.08	0.03	0.02	0.08	0.04	0.03	0.08	0.04	0.03	0.08	0.05	0.03	0.08	0.04	0.03	0.08	0.05	0.03	0.08	0.04	0.03	0.08	0.05
December	0.03	0.10	0.04	0.01	0.09	0.02	0.02	0.09	0.03	0.03	0.09	0.04	0.03	0.09	0.04	0.03	0.09	0.04	0.04	0.09	0.05	0.03	0.09	0.04	0.04	0.09	0.05
Annual Min/Max/Avg	0.01	0.10	0.03	0.00	0.09	0.03	0.02	0.09	0.03	0.03	0.09	0.04	0.03	0.09	0.04	0.03	0.09	0.04	0.02	0.09	0.04	0.02	0.09	0.04	0.02	0.09	0.04

NOTES: ' -- ' indicates filter offline

3.9 Combined Filter Effluent Water Quality

			Ross	dale					E.L. \$	Smith		
Month	Particle (Counts (no./n	ոL,>2um)	Т	urbidity (NTL	J)	Particle 0	Counts (no./n	nL,>2um)	т	urbidity (NTU	I)
	Min	Мах	Avg	Min	Max	Avg	Min	Max	Avg	Min	Мах	Avg
January	2	13	4	0.01	0.08	0.05	1	16	6	0.03	0.05	0.03
February	1	19	5	0.03	0.08	0.04	1	26	7	0.01	0.04	0.03
March	1	17	4	0.03	0.10	0.04	1	14	4	0.02	0.04	0.03
April	1	15	5	0.01	0.08	0.03	1	13	7	0.02	0.07	0.03
Мау	1	32	7	0.01	0.09	0.03	1	21	9	0.02	0.04	0.03
June	1	19	2	0.01	0.09	0.03	2	19	7	0.02	0.04	0.03
July	1	12	2	0.02	0.10	0.04	2	14	6	0.02	0.04	0.03
August	1	23	2	0.01	0.08	0.03	1	16	5	0.01	0.06	0.03
September	1	18	4	0.01	0.09	0.03	1	19	7	0.01	0.05	0.03
October	1	19	2	0.02	0.08	0.02	1	19	7	0.01	0.04	0.03
November	1	20	4	0.01	0.08	0.03	1	25	8	0.01	0.05	0.03
December	1	19	3	0.03	0.10	0.04	1	21	5	0.01	0.05	0.03
Annual Min/Max/Avg	1	32	4	0.01	0.10	0.04	1	26	7	0.01	0.07	0.03

NOTES: '--' indicates plant offline

3.10 Rossdale UV Disinfection - Filters 1 - 3

2021

Filter			1						2	2					3	5			Tra	nsmittar	nce
	Dosa	age (mJ/	cm²)	F	low (MLI	D)	Dosa	age (mJ/	cm²)	FI	low (MLI	D)	Dosa	age (mJ/	cm²)	FI	ow (MLI	D)		(%)	
Month	Min	Max	Avg	Min	Max	Total	Min	Max	Avg	Min	Max	Total	Min	Max	Avg	Min	Мах	Total	Min	Max	Avg
January	34.4	61.2	42.1	11.2	30.2	442.9	34.2	67.2	43.4	10.4	29.8	408.0	34.7	67.4	43.4	10.6	29.5	403.7	93.0	95.4	94.5
February	34.6	78.6	36.1	12.4	29.9	443.9	34.6	69.9	37.8	7.8	30.9	451.7	33.7	60.0	39.0	11.0	29.5	401.1	91.0	94.6	92.9
March	34.3	75.0	38.0	13.1	29.4	456.7	34.4	89.1	40.0	9.5	28.7	488.0	33.4	56.0	40.0	12.3	27.5	451.2	92.0	96.2	94.2
April	35.3	161.6	49.1	10.4	30.4	486.1	36.6	156.9	51.4	7.9	31.5	478.9	35.3	141.0	50.4	8.9	30.0	488.8	95.0	97.2	96.5
May	34.9	63.8	39.2	13.6	32.2	522.6	34.5	134.2	39.0	10.4	32.8	574.0	34.6	105.7	38.2	11.1	31.6	512.3	88.8	97.0	93.2
June	34.8	69.2	35.6	16.9	41.5	565.9	34.3	68.8	35.7	11.0	43.8	666.9	34.4	57.5	36.1	14.0	43.6	599.1	90.8	95.0	93.0
July	34.7	57.8	37.9	17.9	42.1	772.0	34.0	59.4	38.6	16.3	43.5	758.8	34.5	77.9	37.7	15.0	45.0	751.3	93.5	97.5	95.3
August	34.8	125.2	51.7	15.7	39.3	566.5	35.2	193.6	52.1	18.9	37.4	538.5	35.0	189.5	51.0	15.7	37.7	491.5	94.5	98.9	97.2
September	34.9	66.5	41.5	15.4	36.0	418.9	34.2	58.8	41.6	15.8	36.3	521.9	33.8	77.0	42.4	15.1	36.3	507.6	93.4	97.2	92.8
October	35.1	151.8	53.1	14.1	36.7	457.0	34.2	109.2	47.7	12.6	34.3	419.9	35.1	139.9	54.2	12.3	35.3	417.4	94.9	97.2	96.7
November	35.3	98.5	52.2	10.3	34.2	455.5	35.1	137.3	47.9	10.8	32.2	459.7	35.2	86.3	52.2	10.1	33.6	424.7	92.2	97.3	96.0
December	34.7	116.6	46.4	10.6	30.9	426.5	35.0	79.1	44.1	10.1	33.2	536.0	34.9	105.7	47.5	10.2	30.7	515.9	95.4	96.7	96.1
Annual Total						6015						6302						5964			
Annual Min/Max/ Avg	34.3	161.6	43.6	10.3	42.1		34.0	193.6	43.1	7.8	43.8		33.4	189.5	44.2	8.9	45.0		88.8	98.9	94.9

NOTES: - Each filter has a UV reactor

- Transmittance (%) is a grab sample of the filter effluent prior to the UV reactor of a random online filter

' -- ' indicates filter and UV reactor offline

3.11 Rossdale UV Disinfection - Filters 4 - 6

2021

Filter		4					5						6						Tra	nsmittar	nce
	Dosa	age (mJ/	cm²)	F	low (MLI	D)	Dosa	age (mJ/	cm²)	F	ow (MLI	D)	Dos	age (mJ/	cm²)	F	low (MLI	D)		(%)	
Month	Min	Мах	Avg	Min	Max	Total	Min	Мах	Avg	Min	Мах	Total	Min	Max	Avg	Min	Max	Total	Min	Мах	Avg
January	35.0	63.1	41.5	11.8	28.6	414.6	34.3	99.1	48.3	12.3	27.4	405.7	34.4	72.6	43.8	11.5	31.9	344.0	93.0	95.4	94.5
February	34.7	70.3	36.5	11.9	29.5	428.8	34.3	58.0	38.5	10.1	28.6	401.8	33.9	68.8	36.6	10.7	33.0	493.1	91.0	94.6	92.9
March	34.1	78.2	38.2	11.8	29.1	478.0	33.6	146.6	45.9	10.1	26.2	452.8	34.6	55.5	39.0	10.6	30.6	509.7	92.0	96.2	94.2
April	35.2	102.1	48.1	10.4	29.9	488.1	38.8	174.9	58.2	11.0	28.3	491.3	35.4	112.9	51.3	8.9	32.6	531.7	95.0	97.2	96.5
May	34.8	90.6	38.3	8.0	31.8	539.5	33.6	69.3	57.9	9.3	31.1	502.8	33.9	60.5	38.1	13.1	34.5	628.0	88.8	97.0	93.2
June	34.8	58.4	36.4	14.1	44.3	601.1	33.5	44.9	35.6	13.0	37.4	671.8	34.1	58.2	35.6	16.2	42.4	704.3	90.8	95.0	93.0
July	34.7	70.0	40.4	15.3	44.8	735.7	33.3	59.5	38.9	17.5	37.1	715.3	34.3	57.8	37.0	16.2	46.0	782.3	93.5	97.5	95.3
August	34.8	250.5	58.7	18.1	35.7	578.8	34.0	173.6	55.5	17.4	35.1	498.7	35.0	126.6	47.4	17.3	44.7	580.8	94.5	98.9	97.2
September	34.8	115.7	44.9	16.2	36.2	443.6	33.9	70.7	44.5	17.3	33.8	439.0	33.9	71.3	41.2	16.0	38.9	570.8	93.4	97.2	92.8
October	34.8	181.7	61.6	12.3	37.3	460.3	33.7	96.0	54.8	11.1	31.6	429.0	34.9	100.9	51.1	13.7	37.3	450.8	94.9	97.2	96.7
November	37.1	92.4	58.1	10.4	32.1	438.5	34.4	78.9	48.5	10.4	28.6	412.0	35.4	87.0	50.2	10.2	30.7	491.5	92.2	97.3	96.0
December	35.3	103.9	53.8	10.6	32.2	537.6	33.5	86.4	44.5	10.4	29.1	468.6	34.1	97.9	48.1	9.5	33.6	536.2	95.4	96.7	96.1
Annual																					
Total						6145						5889						6623			
Annual Min/Max/ Avg	34.1	250.5	46.2	8.0	44.8		33.3	174.9	47.4	9.3	37.4		33.9	126.6	43.2	8.9	46.0		88.8	98.9	94.9

NOTES: - Each filter has a UV reactor

- Transmittance (%) is a grab sample of the filter effluent prior to the UV reactor of a random online filter

' --- ' indicates filter and UV reactor offline

3.12 Rossdale UV Disinfection - Filters 7 - 9

2021

Filter	7								8	3			9						Tra	nsmittar	nce
	Dosa	age (mJ/	cm²)	FI	low (MLI	D)	Dosa	age (mJ/	cm²)	F	low (MLI	D)	Dosa	age (mJ/	cm²)	FI	ow (MLI	D)		(%)	
Month	Min	Мах	Avg	Min	Мах	Total	Min	Max	Avg	Min	Мах	Total	Min	Мах	Avg	Min	Max	Total	Min	Max	Avg
January	33.5	57.1	38.6	11.1	33.5	516.1	34.9	72.9	37.5	9.0	33.2	502.5	33.8	89.9	38.0	7.6	31.1	245.3	93.0	95.4	94.5
February	33.9	59.0	35.8	11.2	33.9	527.3	33.8	65.2	35.9	8.3	33.3	509.9						0.0	91.0	94.6	92.9
March	33.7	53.3	37.1	10.5	32.9	543.5	34.5	55.9	36.8	10.6	32.3	537.4						0.0	92.0	96.2	94.2
April	35.1	147.6	44.0	13.0	33.3	503.5	34.5	102.3	43.6	10.4	34.6	572.2						0.0	95.0	97.2	96.5
May	34.4	83.4	36.7	8.0	34.6	586.2	34.3	59.5	37.0	11.7	36.4	620.4						0.0	88.8	97.0	93.2
June	33.3	69.0	35.6	11.7	46.3	735.5	34.2	57.0	35.6	8.5	45.7	753.9						0.0	90.8	95.0	93.0
July	33.9	45.6	35.8	15.3	46.4	880.2	34.5	56.1	36.3	16.6	46.3	780.6	33.1	52.9	37.7	15.1	38.4	347.7	93.5	97.5	95.3
August	33.5	151.6	38.5	16.7	42.6	597.1	34.9	112.1	41.7	16.7	40.3	626.5	33.3	131.3	44.8	18.5	43.2	584.6	94.5	98.9	97.2
September	34.0	52.6	36.0	19.0	39.2	516.3	34.3	88.3	36.9	15.2	39.0	566.5	33.4	79.2	35.8	19.1	38.4	467.9	93.4	97.2	92.8
October	33.8	122.1	39.6	14.2	42.6	530.3	34.6	122.3	40.3	13.2	38.9	478.1	33.3	107.2	42.3	14.3	41.4	441.4	94.9	97.2	96.7
November	33.2	58.5	38.0	10.5	35.0	500.7	34.3	83.9	40.3	10.7	35.6	494.4	34.8	110.7	49.3	11.6	37.3	540.1	92.2	97.3	96.0
December	33.1	82.0	37.7	10.5	34.1	551.1	33.8	89.6	38.2	10.3	35.5	576.6	34.5	91.0	47.1	10.1	35.4	575.5	95.4	96.7	96.1
Annual						0000						7040						2000			
Total						6988						7019						3202			
Annual Min/Max/ Avg	33.1	151.6	37.7	8.0	46.4		33.8	122.3	38.3	8.3	46.3		33.1	131.3	43.1	7.6	43.2		88.8	98.9	94.9

NOTES: - Each filter has a UV reactor

- Transmittance (%) is a grab sample of the filter effluent prior to the UV reactor of a random online filter

' -- ' indicates filter and UV reactor offline

3.13 E.L. Smith UV Disinfection - UV Reactors 1 - 4

2021	
------	--

Filter				1					2	2					3	3					4	L			Tra	nsmittar	100
	Dos	age (mJ/	cm²)	F	low (MLI	D)	Dos	age (mJ/	cm²)	F	low (MLI	D)	Dos	age (mJ/	cm²)	F	low (MLI	D)	Dos	age (mJ/	cm²)	F	low (MLI	D)		(%)	
Month	Min	Max	Avg	Min	Max	Total	Min	Max	Avg	Min	Max	Total	Min	Max	Avg	Min	Max	Total	Min	Max	Avg	Min	Max	Total	Min	Max	Avg
January	60.2	112.8	71.5	54.8	93.2	1,412.3	58.8	98.5	73.2	42.9	90.7	1,115.9	43.2	110.9	71.7	52.8	94.2	2,445.0	46.9	89.9	51.8	37.0	89.3	2,246.5	92.7	95.3	94.2
February						0.0	45.0	106.0	65.3	54.1	112.9	2,160.9	46.0	111.5	64.3	54.6	101.0	2,282.3	39.8	93.2	47.2	53.1	93.2	2,169.0	90.9	94.7	92.8
March						0.0	50.6	163.1	66.1	51.9	98.3	2,482.6	47.7	157.6	64.2	51.3	96.3	2,447.7	46.6	141.3	47.7	66.9	89.5	2,488.4	92.3	96.5	94.6
April	68.0	76.2	73.0	54.7	95.0	72.7	56.1	90.4	70.4	52.9	94.8	2,364.3	59.6	165.7	69.7	50.6	93.0	2,226.6	46.8	81.7	48.7	51.9	90.9	2,363.2	95.1	97.5	96.4
May	45.6	98.9	65.0	32.3	110.9	914.1	45.2	125.9	62.1	32.0	106.2	2,033.0	44.9	99.4	62.1	59.2	112.4	2,564.4	40.6	91.1	47.5	39.2	102.2	2,275.6	88.7	97.3	93.5
June	45.0	131.9	73.2	40.7	115.1	1,276.9	49.0	121.7	70.9	52.0	112.9	2,422.4	45.4	119.0	70.0	55.4	122.2	2,723.8	40.4	78.6	47.1	30.6	98.7	2,401.1	90.4	95.3	93.0
July	45.5	143.6	61.8	43.5	93.9	1,323.4	45.7	140.4	62.0	49.4	106.5	2,386.5	45.3	139.3	62.5	60.1	116.6	2,794.5	43.3	112.3	47.2	54.6	101.6	2,362.3	93.0	97.2	95.1
August	57.7	89.5	75.5	36.2	105.7	1,480.5	49.1	91.4	71.5	49.0	107.4	2,550.6	57.5	101.0	77.1	51.2	113.0	2,800.8	46.7	101.5	47.4	59.1	103.0	1,792.2	95.2	98.1	97.0
September	56.7	116.9	78.1	35.7	93.2	119.7	45.6	166.5	61.4	33.7	104.0	2,366.3	47.7	121.0	68.4	49.6	114.9	2,454.2	46.8	122.1	47.8	55.3	98.3	2,328.8	92.7	97.4	96.0
October	54.4	153.4	66.8	42.0	108.8	1,363.1	54.3	166.7	67.2	50.3	97.6	1,178.2	65.7	177.6	79.3	59.9	103.8	2,514.6	46.9	106.6	47.3	58.0	94.8	2,353.5	96.0	98.0	93.6
November						0.0	47.7	162.6	58.6	33.4	95.1	2,290.8	53.4	189.4	68.5	35.9	98.4	2,399.9	46.8	134.6	47.3	34.5	91.3	2,255.6	93.2	97.7	95.9
December	57.4	158.0	74.0	29.5	76.8	19.2	45.6	144.9	55.2	37.0	89.6	2,153.4	58.0	156.2	70.6	44.5	92.1	2,274.0	46.9	156.6	47.9	49.6	84.5	2,138.6	93.8	98.0	95.9
Annual Total						7,982						25,505						29,928						27,175			
Annual Min/Max/ Avg	45.0	158.0	69.7	29.5	115.1		45.0	166.7	65.0	32.0	112.9		43.2	189.4	69.0	35.9	122.2		39.8	156.6	47.9	30.6	103.0		88.7	98.1	94.8

NOTES: ' -- ' indicates UV reactor offline

- Transmittance (%) is a grab sample of the combined filter effluent prior to the UV reactor

3.14 Log Removal

2021

				R	ossdale	•				E.L. Smith								
				Log	g Remo	val							Lo	g Remo	val	-		
Month	Giardia Virus Cryptosporidiun								lium		Giardia			Virus		Cryp	tospori	dium
	Min	Мах	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Мах	Avg
January	7.6	8.6	7.9	12	16	14	6.5	6.5	6.5	6.5	6.8	6.7	6.0	9.2	7.5	6.5	6.5	6.5
February	7.4	8.3	7.6	11	16	13	6.5	6.5	6.5	6.6	6.7	6.7	6.3	10	7.7	6.5	6.5	6.5
March	7.5	8.7	8.0	12	16	14	6.5	7.0	6.8	6.6	7.2	7.0	5.9	9.9	7.7	6.5	7.0	6.8
April	8.0	8.8	8.3	12	21	15	7.0	7.0	7.0	7.1	7.3	7.2	6.6	13	8.3	7.0	7.0	7.0
May	8.5	15.8	9.6	18	33	24	7.0	7.0	7.0	7.2	7.5	7.3	9.6	22	14	7.0	7.0	7.0
June	7.5	12.6	10.5	9.3	40	31	7.0	7.0	7.0	7.3	7.8	7.5	14	32	20	7.0	7.0	7.0
July	8.0	12.6	10.4	26	43	33	6.9	7.0	7.0	7.4	8.0	7.6	17	39	24	7.0	7.0	7.0
August	9.2	13.9	11.0	24	42	31	7.0	7.0	7.0	7.3	7.6	7.5	15	27	21	7.0	7.0	7.0
September	7.9	11.5	9.3	16	35	25	7.0	7.0	7.0	7.2	7.5	7.3	11	20	15	7.0	7.0	7.0
October	7.6	9.7	8.8	9.3	25	19	6.7	7.0	7.0	7.2	7.3	7.2	8.5	15	11	7.0	7.0	7.0
November	7.3	8.5	7.6	12	17	14	6.5	7.0	6.5	6.6	7.2	6.7	5.1	10	6.8	6.5	7.0	6.5
December	7.2	8.1	7.4	12	15	13	6.2	6.5	6.5	6.3	6.7	6.7	5.0	8.4	6.8	6.2	6.5	6.5
Annual Min/Max/Avg	7.2	15.8	8.9	9.3	43	21	6.2	7.0	6.8	6.3	8.0	7.1	5.0	39	13	6.2	7.0	6.8

NOTES: ' -- ' indicates plant offline

4.1 Liquid Alum Chemical Consumption

	[Dosage (mg/L)		Consum	ption (kg)	
Month	Ross	dale	E I Smith		Rossdale		EL Smith
	Plant 1	Plant 2	L.L. Omiti	Plant 1	Plant 2	Plant Total	L.L. Ommun
January	5.17	5.17	5.00	17,403	23,673	41,076	82,055
February	5.78	5.78	5.53	17,239	28,213	45,453	84,334
March	21.6	21.6	25.4	74,553	104,344	178,897	433,283
April	26.3	26.3	27.8	90,249	138,450	228,699	452,365
Мау	50.4	50.4	67.0	179,339	302,878	482,217	1,216,772
June	45.9	46.0	62.6	190,060	315,671	505,731	1,232,779
July	26.1	26.0	32.2	128,288	230,936	359,224	648,418
August	22.2	21.8	20.8	130,669	106,198	236,867	395,569
September	25.6	23.2	26.1	42,981	179,798	222,779	431,283
October	19.8	20.0	20.5	98,517	77,859	176,376	345,992
November	6.25	6.28	5.27	20,466	36,804	57,270	87,864
December	5.02	5.00	5.01	18,656	31,707	50,363	76,186
Annual Total				1,008,419	1,576,531	2,584,950	5,486,900
Annual Avg	21.5	21.5	25.4				

2021

NOTES : ' -- ' indicates plant offline

- Liquid alum consumption (kg) at 100% by weight (solution delivered to sites at a concentration of 48.5%)

	[Dosage (mg/L)		Consum	ption (kg)	
Month	Ross	sdale	FI Smith		Rossdale		FI Smith
	Plant 1	Plant 2	L.L. 011111	Plant 1	Plant 2	Plant Total	L.L. Omitin
January	0.10	0.10		163	222	384	
February	0.10	0.10		144	235	379	
March	0.20	0.20	0.27	326	465	791	1,335.76
April	0.25	0.25	0.21	416	637	1,053	1,681.32
Мау	0.32	0.32	0.24	541	940	1,481	2,092.80
June	0.28	0.28	0.22	582	1,003	1,585	2,141.19
July	0.21	0.21	0.18	514	916	1,430	1,788.82
August	0.20	0.19	0.12	576	452	1,028	1,075.98
September	0.20	0.20	0.13	162	759	922	1,068.44
October	0.21	0.22	0.11	493	408	901	908.95
November	0.11	0.11	0.05	171	304	474	42.45
December	0.10	0.10		181	308	488	
Annual Total				4,269	6,648	10,917	12,136
Annual Avg	0.19	0.19	0.18				

4.2 Primary Polymer (Magnafloc LT 27AG) Chemical Consumption 2021

NOTES: ' -- ' indicates plant offline

- Primary polymer consumption (kg) at 100% by weight mixed at the sites to required solution

4.3 Carbon Chemical Consumption

	C	Dosage (mg/L	.)		Consum	ption (kg)	
Month	Ross	sdale	EL Smith		Rossdale		FI Smith
	Plant 1	Plant 2		Plant 1	Plant 2	Plant Total	L.L. 0
January							
February							
March	8.80	8.40	10.6	4,221	6,252	10,473	19,714
April	0.39	0.62		22	48	70	
May							
June							
July							
August							
September							
October							
November							
December							
Annual Total				4,243	6,300	10,544	19,714
Annual Avg	7.96	7.62	10.6				

2021

NOTES: ' -- ' indicates carbon not being used

4.4 Sodium Hypochlorite Chemical Consumption

			Rossdale			E.L. 3	Smith
Month	Dosage	e (mg/L)	C	onsumption (kg))	Dosage	Consumption
	Plant 1	Plant 2	Plant 1	Plant 2	Plant Total	(mg/L)	(kg)
January	3.02	2.97	613,642	823,074	1,436,716	2.97	3,102,697
February	3.04	3.04	548,533	896,051	1,444,584	3.13	3,033,764
March	3.10	3.03	647,740	916,801	1,564,541	3.07	3,330,931
April	2.87	2.78	596,740	886,661	1,483,401	2.79	2,887,268
Мау	3.12	3.08	668,668	1,152,893	1,821,561	3.43	3,955,113
June	3.14	3.20	804,589	1,407,757	2,212,347	3.55	4,547,990
July	2.82	2.83	843,652	1,517,863	2,361,515	3.18	4,068,429
August	3.00	2.79	1,085,811	831,413	1,917,224	2.69	3,251,235
September	2.74	2.73	292,884	1,330,582	1,623,466	3.00	3,168,545
October	2.68	2.53	823,398	620,494	1,443,892	2.91	3,158,691
November	2.77	2.74	556,222	968,679	1,524,900	2.81	2,996,816
December	2.80	2.79	633,359	1,075,235	1,708,593	2.76	2,682,631
Annual Total			8,115,238	12,427,502	20,542,740		40,184,112
Annual Avg	2.93	2.89				3.02	

2021

NOTES: ' -- ' indicates plant offline

- Sodium hypochlorite consumption (kg) at 0.8% by weight (sodium hypochlorite generated onsite at a concentration of 0.8%)

- Plant 1 was converted to sodium hypochlorite from chlorine on Feb 2, 2015.

- Plant 2 was converted to sodium hypochlorite from chlorine on Feb 10, 2015.

- Plant Total Consumption is the combined addition of Plant 1, Plant 2 and Post Filter Trim.

4.4-1 Chlorine and Sodium Hypochlorite Chemical Consumption

			Chlorine			Sodium Hy	nochlorite
			omornie			Coalain Hy	poemente
			Rossdale			E.L. \$	Smith
Month	Dosage	(mg/L)	C	Consumption (k	g)	Dosago	Consumption
	Plant 1	Plant 2	Plant 1	Plant 2	Plant Total	(mg/L)	(kg)
January						2.97	3,102,697
February						3.13	3,033,764
March						3.07	3,330,931
April						2.79	2,887,268
May						3.43	3,955,113
June						3.55	4,547,990
July						3.18	4,068,429
August						2.69	3,251,235
September						3.00	3,168,545
October						2.91	3,158,691
November						2.81	2,996,816
December						2.76	2,682,631
Annual Total							40,184,112
Annual Avg						3.02	

2021

NOTES: ' -- ' indicates plant offline

- Chlorine consumption (kg) at 100% by weight (chlorine gas tonners delivered to the Rossdale WTP)

- Sodium hypochlorite consumption (kg) at 0.8% by weight (sodium hypochlorite generated onsite at a concentration of 0.8% at the E.L. Smith WTP)

- Sodium hypochlorite dosage is chlorine equivalent

- Rossdale plant 1 converted to onsite generated 0.8% sodium hypochlorite on Feb 2nd.

- Rossdale plant 2 converted to onsite generated 0.8% sodium hypochlorite on Feb 13th.

4.5 Filter Polymer (Magnafloc LT 7995) Chemical Consumption

	Dosage	(mg/L)	Consumption (kg)			
Month	Rossdale	E.L. Smith	Rossdale	E.L. Smith		
January	0.39	0.42	1,436	3,384		
February	0.41	0.65	1,498	4,830		
March	0.22	0.30	852	2,485		
April	0.15	0.15	587	1,199		
May	0.30	0.19	1,329	1,677		
June	0.38	0.10	1,973	1,003		
July	0.23	0.10	1,525	1,015		
August	0.15	0.10	775	951		
September	0.15	0.17	648	1,383		
October	0.15	0.16	635	1,320		
November	0.37	0.43	1,573	3,499		
December	0.39	0.24	1,820	1,762		
Annual Total			14,650	24,507		
Annual Avg	0.27	0.25				

NOTES: ' -- ' indicates plant offline

- Filter polymer consumption (kg) at 100% by weight mixed at the sites to required solution

4.6 Aqua Ammonia Chemical Consumption

	Dosage	(mg/L)	Consumption (kg)		
Month	Rossdale	E.L. Smith	Rossdale	E.L. Smith	
January	0.62	0.58	12,018	22,100	
February	0.62	0.58	11,939	20,184	
March	0.62	0.58	12,797	21,549	
April	0.61	0.58	12,929	14,918	
May	0.61	0.58	14,426	4,825	
June	0.63		17,477		
July	0.63		21,523		
August	0.63		16,788		
September	0.63		14,761		
October	0.63		13,539		
November	0.64		14,229		
December	0.65		16,056		
Annual Total	Annual Total		178,480	83,575	
Annual Avg	0.63	0.58			

NOTES: ' -- ' indicates plant offline

- Aqua ammonia consumption (kg) at 100% by weight (solution delivered to sites at a concentration of 19.0%)

4.6 - 1 LAS Ammonia Chemical Consumption

2021

Month	Dosage (mg/L)	Consumption (kg)			
	E.L Smith	E.L Smith			
January	-	-			
February	-	-			
March	0.58	2,117			
April	0.58	11,941			
May	0.58	34,550			
June	0.58	49,206			
July	0.58	49,346			
August	0.59	48,036			
September	0.61	42,143			
October	0.59	42,003			
November	0.59	39,517			
December	0.59	37,373			
Annual Total		356,232			
Annual Avg	0.59				

NOTES: ' -- ' indicates LAS system offline - LAS consumption (kg) at 100% by weight (solution delivered to sites at a concentration of 40.0%)

4.7 Caustic Soda Chemical Consumption

2021

	Dosage	(mg/L)	Consumption (kg)		
Month	Rossdale	E.L. Smith	Rossdale	E.L. Smith	
January					
February					
March	3.18	8.80	16,277	79,243	
April	1.63	6.82	13,139	96,154	
May	5.59	15.9	47,963	252,066	
June	4.33	14.0	43,219	243,478	
July	0.64	4.61	1,993	82,518	
August		2.14		22,861	
September		5.30		28,499	
October					
November					
December					
Annual Total	Annual Total		122,592	804,830	
Annual Avg	3.56	8.94			

NOTES: ' -- ' indicates plant offline

- Caustic soda consumption (kg) at 100% by weight (solution delivered to sites at a concentration of 50.0%)

	Dosag	e (mg/L)	Consumption (kg)								
Month	Rossdale	EL Smith	Rossdale	EL Smith							
January	0.67	0.64	11,323	21,112							
February	0.67	0.63	11,156	19,019							
March	0.67	0.64	12,027	21,588							
April	0.69	0.64	12,817	20,654							
May	0.68	0.64	13,873	22,878							
June	0.66	0.63	16,013	25,642							
July	0.65	0.63	19,311	25,639							
August	0.66	0.63	15,302	24,397							
September	0.67	0.64	13,621	21,058							
October	0.65	0.63	12,195	21,300							
November	0.67	0.63	12,961	20,025							
December	0.67	0.63	14,519	18,992							
Annual Total	Annual Total		165,117	262,304							
Annual Avg	0.67	0.63	0.63								

4.8 Fluoride Chemical Consumption

2021

NOTES: ' -- ' indicates plant offline

- Fluoride consumption (kg) at 100% by weight (solution delivered to sites at a concentration of 21.8%)

4.9 Sodium Bisulfite Chemical Consumption 2021

		Rossdale		E.L. Smith			
Month	Dosage (mg/L)	Consumption (kg)	De-chlorinated Waste Stream to Outfall (ML)	Dosage (mg/L)	Consumption (kg)	De-chlorinated Waste Stream to Outfall (ML)	
January	19.7	17,290	341	13.2	38,870	1,111	
February	23.1	18,088	298	12.6	40,392	1,238	
March	20.9	18,778	339	12.5	44,313	1,327	
April	17.9	15,229	325	13.9	46,413	1,292	
May	19.4	22,257	456	15.7	63,457	1,444	
June	21.1	24,542	450	12.8	42,303	1,260	
July	28.1	20,476	285	12.3	35,916	1,081	
August	30.5	23,745	307	16.7	43,651	995	
September	28.7	20,659	301	14.8	44,297	1,131	
October	26.4	22,915	343	18.2	45,803	1,179	
November	22.9	24,271	424	12.3	53,840	1,646	
December	28.3	27,145	370	14.9	44,264	1,144	
Annual Total		255,395	4,240		543,517	14,848	
Annual Avg	23.9			14.2			

NOTES: ' -- ' indicates Plant Offline

- Sodium bisulfite consumption (kg) at 38% by weight (solution delivered to sites at a concentration of 38.0%)

5.1 Waste Stream Volumes (ML)

2021

	Rossdale						E.L. Smith								
Month	Clarifier Blowdown	Clarifier Washdown	Backwash Water	Filter to Waste	Bypass	Plant Total	Clarifier Blowdown	Clarifier Washdown	Backwash Water	Filter to Waste	Bypass	LLP Flush	HLP Cooling	Plant Total	De-chlorinated Waste Flow to Outfall
January	192	12	123	27	0.0	355	618		352	108	24	0.6	21	1,122	1,111
February	136		117	39	7.2	299	598		440	145	44	0.5	21	1,249	1,238
March	206		115	31	6.5	358	667		414	153	104	0.6	22	1,360	1,327
April	204		101	26	4.5	336	589		429	195	71	0.5	24	1,309	1,292
Мау	257		140	50	18	464	667		402	263	108	0.6	23	1,463	1,444
June	295	12	99	31	24	460	673	13	347	208	19	0.6	33	1,292	1,260
July	168		103	25	1.8	298	696	10	242	105	28	0.6	31	1,113	1,081
August	128	41	98	28	38	333	686		204	80	16	0.6	31	1,017	995
September	124	7.8	97	35	15	278	692		284	139	38	0.5	28	1,182	1,131
October	205	7.8	97	31	16	357	665		271	160	75	0.6	31	1,202	1,179
November	226		152	50	8.8	437	698		453	441	29	1.8	26	1,649	1,646
December	171		154	44	7.8	377	595		314	194	22	7.5	27	1,160	1,144
Annual Total	2,312	80	1,395	417	147	4,352	7,844	23	4,152	2,190	577	15	318	15,119	14,848

NOTES: - Clarifier washdown volume(s) estimated for clarifier cleaning

- LLP flush, HLP cooling and chlorinated waste flow to outfall are not applicable to the Rossdale WTP

- De-chlorinated waste flow to outfall is the estimated chlorinated waste flow to outfall for dechlorination

5.2 Rossdale Clarifier Blowdown Clarifier Washdown and Backwash Water Waste Stream Data

	Clarifier B	lowdown	Clarifier V	Vashdown	Backwash Water		
Month	TSS (kg)	Aluminum (kg)	TSS (kg)	Aluminum (kg)	TSS (kg)	Aluminum (kg)	
January	23,384	1,798	38	4	10,912	3,777	
February	32,385	1,984	0	0	13,801	4,777	
March	80,365	7,735	0	0	8,654	2,995	
April	318,136	10,001	0	0	3,976	1,376	
Мау	343,018	20,891	0	0	3,382	1,171	
June	517,137	22,331	1,102	39	3,576	1,238	
July	238,521	15,684	0	0	2,743	950	
August	88,239	10,310	432	64	2,347	812	
September	98,096	9,721	128	16	3,488	1,207	
October	55,183	7,681	147	13	3,509	1,215	
November	44,639	2,569	0	0	24,180	8,370	
December	31,837	2,197	0	0	23,753	8,222	
Annual Total	1,870,940	112,902	1,847	137	104,321	36,111	

NOTES: '--' indicates that clarifier washdown did not occur

- Clarifier washdown waste stream solids, TSS and aluminum are calculated values

5.3 Rossdale Waste Stream Data

2021

	De-Chlorinated Waste Flow to Waste Stream 3						De-Chlorinated Waste Flow to Waste Stream 7						
Month	Total	Chlorine	(mg/L)	s	Sulfite (mg/L)			Total Chlorine (mg/L)			Sulfite (mg/L)		
	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	
January	0.00	0.00	0.00	0.22	20.0	7.77	0.00	0.00	0.00	0.10	20.0	7.51	
February	0.00	0.00	0.00	0.47	20.0	8.15	0.00	0.00	0.00	0.33	20.0	6.13	
March	0.00	0.00	0.00	0.16	20.0	7.75	0.00	0.00	0.00	0.79	20.0	6.32	
April	0.00	0.00	0.00	0.48	20.0	9.19	0.00	0.00	0.00	1.90	20.0	7.66	
Мау	0.00	0.00	0.00	0.10	20.0	9.95	0.00	0.00	0.00	0.10	20.0	8.86	
June	0.00	0.00	0.00	0.16	20.0	6.79	0.00	0.00	0.00	0.10	20.0	6.24	
July	0.00	0.00	0.00	0.87	20.0	5.30	0.00	0.00	0.00	1.50	20.0	8.79	
August	0.00	0.00	0.00	0.74	20.0	5.33	0.00	0.00	0.00	0.18	20.0	7.55	
September	0.00	0.00	0.00	1.10	20.0	8.51	0.00	0.00	0.00	1.37	20.0	8.21	
October	0.00	0.00	0.00	0.72	20.0	6.49	0.00	0.00	0.00	0.24	20.0	9.01	
November	0.00	0.00	0.00	0.97	20.0	6.93	0.00	0.00	0.00	0.30	20.0	5.56	
December	0.00	0.00	0.00	0.11	20.0	9.73	0.00	0.00	0.00	2.23	20.0	10.0	
Annual Min/Max/Avg	0.00	0.00	0.00	0.10	20.0	7.65	0.00	0.00	0.00	0.10	20.0	7.68	

	Clarifier B	lowdown	Clarifier V	Washdown	Backwash Water		
Month	TSS (kg)	Aluminum (kg)	TSS (kg)	Aluminum (kg)	TSS (kg)	Aluminum (kg)	
January	52,851	3,581	0	0	26,868	9,300	
February	55,365	3,681	0	0	33,455	11,581	
March	141,247	18,913	0	0	24,122	8,350	
April	516,946	19,745	0	0	12,507	4,329	
May	757,279	52,563	0	0	14,904	5,159	
June	907,505	53,333	1,401	49	15,434	5,342	
July	392,071	27,773	154	23	6,430	2,226	
August	162,435	16,854	0	0	6,146	2,128	
September	188,350	18,469	0	0	8,272	2,863	
October	112,090	15,023	0	0	10,085	3,491	
November	95,162	3,835	0	0	56,141	19,433	
December	58,195	3,325	0	0	36,131	12,507	
Annual Total	3,439,496	237,095	1,555	72	250,494	86,710	

NOTES: '--' indicates that clarifier wash did not occur

- Clarifier washdown waste stream solids, TSS and aluminum are calculated values

5.5 E.L. Smith Waste Stream Data

2021

	De-chlorinated Waste Flow to Outfall													
Month	Sul	phite (mg/L	-)	Tota	Chlorine	(mg/L)	рН							
	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg					
January	0.18	20.0	9.58	0.00	0.00	0.00	6.49	10.5	7.62					
February	0.10	20.0	9.28	0.00	0.00	0.00	6.60	8.09	7.17					
March	0.16	20.0	8.08	0.00	0.00	0.00 6.85		7.85	7.41					
April	0.28	20.0	7.19	0.00	0.00	0.00	7.03	8.14	7.72					
Мау	0.16	20.0	4.42	0.00	0.00	0.00	6.90	7.90	7.48					
June	0.20	20.0	5.03	0.00	0.00	0.00	7.36	8.13	7.71					
July	0.11	20.0	3.96	0.00	0.00	0.00	6.66	8.20	7.73					
August	0.10	20.0	4.60	0.00	0.00	0.00	6.16	7.71	7.47					
September	0.10	20.0	5.16	0.00	0.00	0.00	6.77	7.70	7.47					
October	0.21	20.0	4.33	0.00	0.00	0.00	7.01	7.82	7.63					
November	0.10	20.0	3.29	0.00	0.00	0.00	6.75	8.08	7.81					
December	0.32	20.0	4.36	0.00	0.00	0.00	6.94	8.09	7.85					
Annual Min/Max/Avg	0.10	20.0	5.75	0.00	0.00	0.00	6.2	10.5	7.6					

6.0 Reservoir Chlorine Residual (mg/L) - Part 1

Reservoir	voir Papaschase 1			Ormsby			Clareview Discharge			Millwoods Discharge			Kaskitayo			Discovery Park		
Day	Min	Max	Avg	Min	Max	Avg	Min	Мах	Avg	Min	Max	Avg	Min	Мах	Avg	Min	Max	Avg
Jan	1.67	2.11	1.76	1.80	2.13	2.03	1.79	2.23	1.98	1.71	2.18	2.03	1.75	2.19	2.03	1.19	2.54	1.70
Feb	1.71	2.14	1.82	1.94	2.16	2.05	1.79	2.21	2.00	1.73	2.23	2.03	1.60	2.24	2.07	1.02	1.47	1.26
Mar	1.57	2.11	1.75	1.69	2.12	1.97	1.82	2.22	2.00	1.68	2.16	2.02	1.55	2.17	2.00	1.01	2.50	1.54
Apr	1.67	2.17	1.77	1.57	2.16	1.98	1.75	2.26	2.01	1.73	2.09	2.00	1.87	2.11	1.99	0.98	1.39	1.15
May	1.36	2.00	1.60	1.58	2.01	1.84	1.55	2.03	1.86	1.75	2.10	1.91	1.67	2.06	1.89	1.10	1.62	1.22
Jun	1.22	2.04	1.40	1.35	1.84	1.71	1.47	1.97	1.77	1.71	2.06	1.84	1.59	1.99	1.83	0.88	1.48	1.12
Jul	1.04	1.92	1.28	1.45	2.14	1.65	1.41	1.83	1.64	1.67	2.05	1.77	1.54	1.90	1.76	0.78	1.28	0.99
Aug	0.93	2.04	1.27	1.43	1.90	1.73	1.35	1.96	1.65	1.68	2.14	1.85	1.50	2.04	1.86	0.77	1.30	1.11
Sep	1.16	2.01	1.38	1.49	2.14	1.78	1.26	1.88	1.68	1.75	2.06	1.89	1.61	2.02	1.89	0.77	1.31	1.03
Oct	0.72	1.05	0.91	1.50	2.35	1.90	1.49	2.12	1.81	1.63	2.09	1.96	1.56	2.23	1.97	1.07	2.25	1.42
Nov	1.22	2.20	1.70	1.40	2.16	2.03				1.95	2.12	2.05	1.81	2.34	2.07	0.85	1.28	1.07
Dec	1.57	2.11	1.87	1.73	2.13	2.01				1.78	2.15	1.99	1.75	2.20	2.03	0.78	1.22	0.93
Monthly Min/Max/ Avg	0.72	2.20	1.60	1.35	2.35	1.88	1.26	2.26	1.84	1.63	2.23	1.94	1.50	2.34	1.95	0.77	2.26	1.84

2021

NOTES: '--' Indication Analyzer Offline

6.1 Reservoir Chlorine Residual (mg/L) - Part 2

2021

Reservoir	Rosslyn 1 Londonderry			N.	Jasper Pla	ce	Rosslyn 2			Thorncliffe			Blackmud Creek					
Day	Min	Max	Avg	Min	Мах	Avg	Min	Max	Avg	Min	Max	Avg	Min	Мах	Avg	Min	Мах	Avg
Jan	1.73	1.83	1.79	1.65	2.12	2.00	1.66	2.08	1.74	1.82	2.35	1.93	1.80	2.19	1.90	1.81	2.01	1.90
Feb	1.78	1.92	1.86	1.78	2.12	1.98	1.72	2.16	1.79	1.89	2.35	1.97	1.83	2.29	1.94	1.79	2.18	1.90
Mar	1.72	1.86	1.78	1.72	2.08	1.97	1.56	2.10	1.68	1.77	2.29	1.90	1.68	2.19	1.85	1.67	1.90	1.80
Apr	1.72	1.88	1.79	1.73	2.12	2.00	1.59	2.02	1.67	1.68	2.32	1.88	1.65	2.15	1.84	1.63	2.34	1.73
Мау	1.47	1.84	1.67	1.46	2.05	1.81	1.47	2.04	1.63	1.46	2.25	1.78	1.55	2.23	1.74	1.48	1.86	1.71
Jun	1.45	1.71	1.56	1.41	2.02	1.76	1.39	1.98	1.49	1.30	2.31	1.59	1.41	2.14	1.56	1.47	1.72	1.59
Jul	1.28	1.65	1.42	1.29	1.92	1.58	1.09	1.85	1.27	1.19	2.20	1.45	1.13	2.15	1.43	1.39	2.32	1.56
Aug	1.27	1.65	1.49	1.31	1.87	1.61	1.02	2.03	1.26	1.19	2.33	1.46	1.15	2.27	1.42	1.42	1.74	1.54
Sep	1.30	1.71	1.50	1.39	1.92	1.66	1.22	2.02	1.41	1.31	2.34	1.58	1.36	2.20	1.52	1.26	1.50	1.38
Oct	1.18	1.65	1.55	1.45	2.10	1.81	1.32	2.03	1.50	1.47	2.30	1.76	1.42	2.18	1.63	1.26	1.38	1.33
Nov	1.31	2.05	1.68	1.17	2.36	1.96	1.51	2.10	1.67	1.59	2.38	1.86	1.68	2.25	1.89	1.14	1.80	1.58
Dec				1.50	2.13	2.02	1.64	2.06	1.70	1.82	2.33	2.04	1.74	2.19	1.95	1.57	1.72	1.65
Monthly Min/Max/ Avg	1.18	2.05	1.63	1.17	2.36	1.85	1.02	2.16	1.57	1.19	2.38	1.76	1.13	2.29	1.72	1.14	2.34	1.63

NOTES: '--' Indication Analyzer Offline