

EPCOR Water Services Edmonton, Alberta

2024 Annual Wastewater System Report

Submitted to:

The Province of Alberta
Alberta Environment and Protected Areas (AEPA)

As per requirements of:
Approval to Operate No. 639-03-07

February 2025

Executive Summary

The following report contains two parts, Part I: Wastewater Treatment Plant and Part II: Wastewater Collection System, in order to meet the requirements of Approval to Operate No. 639-03-07.

The 2024 Annual Wastewater Treatment Plant Report is separated into an Annual Wastewater Treatment Report, an Annual Air Pollution Control System Report, an Annual Ambient Air Report, and a summary of contraventions reported, as outlined in the Approval to Operate.

The 2024 Annual Wastewater Collection System Report includes a summary of completed projects and planned major rehabilitation projects, the interconnection control strategy, and storm and CSO volumes and loadings in addition to other requirements outlined in the Approval to Operate.

EPCOR Water Services Gold Bar Wastewater Treatment Plant Edmonton, Alberta

2024 Annual Wastewater Treatment Plant Report

Submitted to:

The Province of Alberta

Alberta Environment and Protected Areas (AEPA)

As per requirements of:
Approval to Operate No. 639-03-07

Table of Contents

Section	Approval No. 639-03-07 Requirement	Page
2024 Overview	N/A	4
2024 Annual Wastewater Treatment Report	6.3.3 (a) (i)	5
Gold Bar WWTP Performance	6.3.3 (a) (i) (A) and (B) and Operations Plan – Sections 9 and 10	5
Assessment of Annual Monitoring Results	6.3.3 (a) (i) (C)	10
Chemical Added to the Wastewater Treatment Process	6.3.3 (a) (i) (D)	11
Names of Supervising Operators	6.3.3 (a) (i) (E)	12
Uncommitted Hydraulic Reserve Capacity	6.3.3 (a) (i) (F)	13
Wet Weather Summary	6.3.3 (a) (i) (G)	13
Summary of Operational Issues	6.3.3 (a) (i) (H)	13
2024 Annual Air Pollution Control System Report	6.3.3 (a) (ii)	14
Summary of Air Pollution Control System Monitoring	6.3.3 (a) (ii) (A)	16
Assessment of Monitoring Results	6.3.3 (a) (ii) (B)	17
Chemicals Consumed by Scrubbers	6.3.3 (a) (ii) (C)	17
Summary of Air Pollution Control System Operational Issues	6.3.3 (a) (ii) (D)	18
2024 Annual Ambient Air Report	6.3.3 (a) (iii)	21
Summary of Ambient Air Monitoring	6.3.3 (a) (iii) (A)	21
Assessment of Monitoring Results	6.3.3 (a) (iii) (B)	22
Summary of Public Odour Complaints	6.3.3 (a) (iii) (C)	24
2024 Summary of Contraventions and Notifications to AEPA	6.3.3 (a) (iv) and Operations Plan – Section 1	25
2024 Biosolids Program Summary	Operations Plan – Section 5	28
Appendix A – Monthly Plant Performance Reports		
Appendix B – WWTP Chemicals		
Appendix C – Operations Monthly Reports		
Appendix D – Air Pollution Control System Data		
Appendix E – Scrubber Chemicals		
Appendix F – Odour Complaints		
Appendix G – Nutri-Gold Summary		
Appendix H – Third Party Agricultural Summary		
Appendix I – Non-Ag Biosolids Management Report		

Tables

Table 1: Limits for Treated Wastewater (Approval to Operate Table 5-1)	5
Table 2: Monitoring - Wastewater System (Approval to Operate Table 6-1)	
Table 3: 2024 Gold Bar WWTP Performance	7
Table 4: 2024 Reclaimed Water Quality	8
Table 5: 2024 Effluent Toxicity	9
Table 6: 2024 Summary of Gold Bar Wastewater Proficiency Testing	9
Table 7: List of Certified Wastewater Treatment Operators (as of December 2024)	12
Table 8: Air Pollution Control System Operating Limits (Approval to Operate Table 5-2)	14
Table 9: Monitoring and Reporting - Air Pollution Control Systems and Ambient Air (Approv	al to
Operate Table 6-2)	14
Table 10: Air Pollution Control System Report - Part I	16
Table 11: Air Pollution Control System Report - Part II	
Table 12: Summary of Scrubber Operational Issues	18
Table 13: Summary of Ambient Air Monitoring Results - Ambient Air Quality Monitoring	
Station	
Table 14: Assessment of Results of Ambient Air Monitoring	23
Table 15: Summary of Gold Bar WWTP Odour Complaints	24
Table 16: Summary of Contraventions	
Table 17: Summary of Notifications to AEPA	
Table 18: Summary of Biosolids Program	28
Figures	
Figure 1: 2024 Monthly Gold Bar WWTP Wastewater Effluent Limit Performance (WELP)	
Index	10
Figure 2: Gold Bar WWTP Wastewater Effluent Limit Performance (WELP Index) 2005-202	

Acronyms

AAAQO Alberta Ambient Air Quality Objectives

AEPA Alberta Environment and Protected Areas

AQMS Air Quality Monitoring Station

CBBRF Clover Bar Biosolids Recycling Facility

CBOD Carbonaceous Biological Oxygen Demand

CSO Combined Sewer Overflow

EPE Enhanced Primary Effluent

EPEPS Enhanced Primary Effluent Pumping Station

EPT Enhanced Primary Treatment

FE Final Effluent

FEC Final Effluent Combined

GBWWTP Gold Bar Wastewater Treatment Plant

H₂S Hydrogen Sulfide

HSE Health, Safety, and Environment

ISO International Organization for Standardization

ML Megalitres

MLD Megalitres per Day

MLSS Mixed Liquor Suspended Solids

NH₃-N Ammonia-Nitrogen

NSR North Saskatchewan River

ORP Oxidation-Reduction Potential

PE Primary Effluent

SOP Standard Operating Procedure

TKN Total Kjeldahl Nitrogen

TP Total Phosphorus

TSS Total Suspended Solids

UV Ultraviolet

WELP Wastewater Effluent Limit Performance

WWTP Wastewater Treatment Plant

2024 Overview

The Gold Bar Wastewater Treatment Plant (WWTP) located on the banks of the North Saskatchewan River in Edmonton, Alberta maintains the ISO 14001:2015 (Environmental Management System) and the ISO 45001:2018 (Occupational Health and Safety Management System) certificates for its Integrated Management System.

Notable events in 2024 include construction/rehabilitation on Digester 4, commissioning of Scrubbers 5 and 6, EPT Scrubber upgrades, PE Channel Upgrades, Laboratory Facility Integration and Odour Control Improvements for Primaries 5-8. Mobilization for the Secondary Aeration Blower Upgrades began in December 2024 construction will begin in 2025. Design and planning has progressed for the Flare Expansion Project, NSR Flood Protection and Auxiliary Control Room Electrical Upgrade. At Clover Bar, acid cleaning of sludge transfer lines 1 and 2 was completed and a new dredge was procured. Planning for the Clover Bar Edmonton Waste Management Centre Groundwater Transfer was also initiated.

In 2024, there were several exceedances of the *Alberta Ambient Air Quality Objectives* (AAAQO) for H_2S . The majority of the exceedances occurred in September and October when there was less precipitation to flush the collection system, but the temperature remained warm. There were no exceedances for NO_2 or SO_2 .

The true dry weather flow in 2024 was 282 MLD. 2024 hosted 6 significant wet weather events resulting in main plant bypasses and a total of 49 secondary bypasses. The plant performed well with a WWTP Effluent Limit Performance (WELP) index of 23.87%.

Gold Bar WWTP Performance

The Gold Bar WWTP final effluent discharge limits of Approval to Operate 639-03-07 are listed in Table 1 and the monitoring requirements are outlined in Table 2.

Table 1: Limits for Treated Wastewater (Approval to Operate Table 5-1)

Parameter	Limit
CBOD₅	≤ 20 mg/L monthly arithmetic mean of daily composite
	samples
TSS	≤ 20 mg/L monthly arithmetic mean of daily composite
	samples
Total Phosphorus	≤ 1.0 mg/L monthly arithmetic mean of daily composite
	samples
Total Ammonia-nitrogen (December 1 to May 31)	≤ 10 mg/L monthly arithmetic mean of daily composite
	samples
Total Ammonia-nitrogen (June 1 to November 30)	≤ 5 mg/L monthly arithmetic mean of daily composite
	samples
E. Coli	≤ 126 per 100 mL/monthly geometric mean
pH	6.5-8.5

Table 2: Monitoring - Wastewater System (Approval to Operate Table 6-1)

Parameter	Frequency (Minimum)	Sample Type	Sampling Location			
	UNTREATED	WASTEWATER				
pH BOD₅ TSS Total Phosphorus Total Ammonia-nitrogen	Once per day	Composite	Untreated wastewater entering the wastewater treatment plant			
Volume of Flow	Continuous, recorded daily	Calculated	Untreated wastewater entering the wastewater treatment plant			
	TREATED V	VASTEWATER				
pH BOD₅ TSS Total Phosphorus Total Ammonia-nitrogen	Once per day	Composite	Wastewater treated plant effluent prior to release to the North Saskatchewan River			
E. Coli	Once per day	Grab	After ultraviolet (UV) disinfection			
Acute Toxicity	Monthly	Grab	Wastewater treatment plant effluent prior to release to the North Saskatchewan River			
Chronic Toxicity	Quarterly	Grab	Wastewater treatment plant effluent prior to release to the North Saskatchewan River			
Volume	Continuous, recorded daily	Calculated	Wastewater treatment plant effluent prior to release to the North Saskatchewan River			
Volume	Continuous, recorded daily	Calculated	Reuse water transmission main			

Parameter	Frequency (Minimum)	Sample Type	Sampling Location
	WASTEWATER TREAT	MENT PLANT BYPASS	
Release Volume	Continuous during bypass event, recorded daily	Calculated	Primary and secondary treatment bypass of
pH BOD₅ TSS Total Phosphorus Total Ammonia-nitrogen	Any bypass event lasting > 2 hours	Composite	wastewater at the wastewater treatment plant
E. Coli	Any bypass event lasting > 2 hours	Grab	
	SLUDGE	DISPOSAL	
Sludge Volume	Total volume	Estimated	Prior to leaving the wastewater treatment plant
Sludge Mass	Total mass	Estimated	Amount of sludge being disposed of as per the Biosolids Management Plan
	CSO OUTFALLS AND UN	AUTHORIZED RELEASE	
Release Volume	Total volume during each discharge event	Continuous during discharge event	Rat Creek CSO outfall; Hardisty-Capilano CSO outfall; Highlands CSO outfall; Cromdale CSO outfall; Strathearn CSO outfall; and unauthorized release point
pH BOD₅ TSS Total Phosphorus	Each discharge event	Composite	Rat Creek CSO outfall
Total Ammonia-nitrogen E. Coli		Grab	Unauthorized release point
The amount of any substance other than wastewater or storm water that is spilled or discharged accidentally or intentionally into the wastewater collection system	Each event	Estimated volume or mass	Unauthorized release point

Table 3 summarizes the monthly minimum, mean, and maximum values for parameters in Table 1 from January 1 to December 31, 2024. All analytical data in the table were developed on 24-hour composite samples collected using autosamplers at the sampling location specified in Table 2. The discrete samples for *Escherichia coli* (*E. coli*) determinations were collected at random times each day. There was also a variance to the 24-hour untreated wastewater composite samples for March 15 as noted in the March 2024 Plant Performance Report, but all sampling requirements were still met. Appendix A contains the monthly Plant Performance Reports.

*Table 3: 2024 Gold Bar WWTP Performance

					Flows	3							TSS			BOD ₆		CBOD			TP					NH ₁			тк	N		NO ₂ +NO ₃		Chlo	ride		E. coli	
					(ML)					pН			(mg/L)			(mg/L)		(mg/L)			(mg P	P/L)			(1	mg N/L)			(mg	N/L)		(mg N/L)		(mg			Counts/100 mL	Total Digested Sludge
	Month	1	Raw C	utfall 30 MPV	V Outfall	20 EPEPS FE	Outfall 10		Outfall 30	0 Outfall 20 Fi	all 10 Raw	Outfall 30	Outfall 20 EPEPS	Outfall 10	Raw	Outfall Outfa 30 20	II EPEPS	Outfall	Raw	Outfall 30	Outfall	EPEPS 0	utfall 10	Raw	Outfall 30 Outfall	20 EPEPS	Outfall	Raw	Outfall 30	Outfall 10 FEC	Raw	Outfall 30 Outfall :	20 Outfall 10 Ra	Outfall 30	Outfall 20 FEC	Raw Ou	otfall 30 Outfall 2	20 Outfall 10 (ML)
Janu		/Geomean Min	272.0 249.8	0.9 1	1.3 0		59.8 37.9	259.8 7 237.9 7	7.5 7.6	6	7.5 324	192		3.5 3.5	321	179	-	2.7	2.7 8.3	4 6.48 4 6.48	-	0.	28 0.28	39.8	32.1		3.52 1.22	3.52 54. 1.22 49.		4.6	0.04	0.05	8.00 6.1	112 447 72.3 447	1	19 2.1	1.9 -	11 3 73.0
Jane		Max	347.8	28.1 1	2.5	.0 0.0 3	08.6	308.6 7	7.6 7.6	6	7.7 520	192		5.5 5.5	371	179		4	4 9.4	2 6.48		0	.34 0.34	43.1			6.69	6.69 60.	0 43.7	6.7	< 0.01	0.05	11.5	322 447	3	22 2.3	1.9	120
Febr		/Geomean Min	273.2 264.2	0.2 1	0.7 0	0.0 20		262.3 7 252.9 7	7.4 7.7	7	7.5 336	92		3.5 3.5	339 284	267 267		2.7	2.7 8.3 2 6.3			0	.32 0.32	39.2			3.94 2.08	3.94 52. 2.08 46.		5.0	0.01	0.02	7.51 5.59	110 161 87.0 161	1	19 1.8	3.2 -	9.6 5 68.6
1 001		Max	290.6	5.4 1	2.5 0		79.2	279.2 7	7.6 7.1	7	7.6 480	92		4.9 4.9	421	267		3	3 10.	.02		0	.98 0.98	43.3			- 5.39	5.39 59.		6.5	< 0.01	0.02	10.0	138 161	- 3	74 1.9	3.3	24
Mai		/Geomean Min	290.8	9.0	9.1 0	0.0 2	72.7 61.3	272.7 7 261.3 7	7.4 7.5	5	7.5 388	110	-	5.1 5.1	334	157		3.1	3.1 8.4				.38 0.38	35.7	35.2 31.2		5.39 2.84	5.39 51.		6.7	0.0	0.11		131 197 83.8 104	1	35 2.3	1.6 -	11.1 4 76.9
IVIAI		Max	272.1 351.9	52.5 1	2.2 0		93.1	293.1 7	7.5 7.3	7	7.6 516	6 148		10.5 10.5	446	183	_	< 2 <	2 7.3 5 9.5		1	0	.74 0.74	42.1	- · · · -		2.84	2.84 43. 9.32 59.		4.1	0.01	0.41	5.21 9.94	305 458	2	98 2.2 67 2.4	2.3	32 76.9
Ap		/Geomean	280.9	4.7 1	1.2 0		65.0 53.5	265.0 7 253.5 7	7.4 7.5	5	7.4 384	4 116		6.1 6.1	349	121		3.0	3.0 8.4				.42 0.42	42.0			3.79	3.79 54.		5.0	0.01	0.20	8.65	91.4 161	9		1.0 -	8.8 3 72.5
Ар		Min Max	264.1 455.8	134.2 1	2.8 0		10.2	310.2 7	7.6 7.3	7	7.6 496	6 150		8.9 8.9	299 428	132	_	< 2 <	2 6.0 4 9.	0 4.94 4 9.72		0	.32 0.32 .74 0.74	24.5			0.80 7.16	7.16 67.	2 60.0	7.6	< 0.01 < 0.01	0.02	6.47 10.0	74.4 81.5 148 241	8	3.6 1.3	1.0	- 3 /2.5
Ma		/Geomean Min	326.3 276.3	25.5 1	1.4 0	0.0 0.0 2	89.4 64.7	289.4 7 264.7 7	7.5 7.6	6	7.5 369	9 83		4.9 4.9	325	109	-	3.0	3.0 8.1			0	.39 0.39	37.5 15.5			2.40 0.61	2.40 56.	5 42.4	4.1	0.09	0.13		83.1 71.2		88 2.0	1.2 -	10.2 1 76.9
IVI		Max	723.2	376.9 1	2.7 1		44.5	344.5 7	7.6 7.9	9	7.8 764	4 112		11.1 11.1	443	190		4	2 4.3 4 10.	-	-	0	.99 0.99				6.33	6.33 10	6 72.5	8.	0.01	0.01	5.48 14.2	46.3 44.8 97.2 109		98 3.8	2.3	42
Ju		/Geomean Min	331.2	27.4 1	1.9 0	0.0 2	91.9 65.7	291.9 7	7.6 7.6	6	7.5 376	90.5		5.3 5.3	292	161		3.2	3.2 7.5				.40 0.40	32.5			2.91 0.22	2.91 50.	8 42.4	4.8	< 0.01	0.14		83.9 78.2	9		1.2 -	12.2 4 76.9
Jul		Max	282.7 633.8	337.9 1	2.9 0		36.5	265.7 7 336.5 7	7.7 7.8	8	7.4 268 7.8 636	8 44.8 6 188		9.2 9.2	368	413	=	2	2 5.1 5 9.2	2 3.11	-	0	.26 0.26 .78 0.78	42.7	20.5 48.9	=	- 5.08	5.08 62.	6 57.8	7.2	< 0.01	0.02	5.73 13.4	46.2 47.4 120 124	6	11 2.8	3.8	31
Ju		/Geomean	313.0	14.5 1	2.1 0		86.4 71.1	286.4 7 271.1 7	7.6 7.6	6	7.6 416	6 74		4.5 4.5	303	149		2.5	2.5 7.8		i		.37 0.37	32.3			1.35 0.44	1.35 53.		3.0	0.03	0.07		84.3 79.4	9	0.9 2.8	2.5 0.	.2 10 .2 5 80.5
30		Min Max	283.9 691.5	348.9 1	3.3			331.0 7	7.7 7.9	9	7.8 532	2 112		6.6 6.6	357	318	_	< 2 <	2 4.3 3 9.2		-	0. 0		38.4	24.8 54.2		- 0.44	0.44 21. 3.57 64.		5.6	0.01 0.11	0.01	6.57 12.2	37.6 59.3 101 105	/	01 4.3	3.6 0	.2 24 60.5
•		/Geomean	316.3	19.4 1	2.1 0	0.0 0.0 2		284.9 7	7.6 7.6	6	7.5 427	7 82		4.7 4.7	301	134		2.7	2.7 7.7	5 4.97	_	0	.36 0.36	31.3	31.9		1.14	1.14 53.	8 39.1	2.8	< 0.01	0.09	11.4	83 70.3	8	0.0 5.9	2.8 0.	1.7 11 1.7 4 71.1
Aug		Min Max	273.4 621.0	260.2 1	3.2 0		60.5 48.1	260.5 7 348.1 7	7.8 7.9	9	7.3 326 7.9 568	B 113		7.7 7.7	181 365	276	_	< 2 < 4	2 4.5 4 10.			0	.19 0.19 .54 0.54	13.3	11.4 44.6		0.59 1.99	0.59 25. 1.99 70.	.7 3.9 5 62.3	2.2	< 0.01 < 0.01	0.02	8.3 13.8	45 32.7 93 97.1	/	00 8.0	9.0 0	7 4 71.1
04		/Geomean	293.0	6.4 1	1.0 0	.0 0.0 2	_	275.5 7	7.5 7.1	7	7.5 345	5 72		5.4 5.4		139		3.3	3.3 8.3	_			.42 0.42				1.94	1.94 61.		4.0	< 0.01	0.05	12.5	84 78		94 3.8	3.0 -	16 5 69.9
Septe		Min Max	272.2 418.9	0.0 81.7 1	3.3 0		60.4 33.2	260.4 7 333.2 7	7.7 7.8	8	7.4 276 7.6 552	2 98		7.0 7.0	204 344	236		2 4	2 6.3 4 9.9				.26 0.26 .04 1.04	23.4			0.74 5.53	0.74 44. 5.53 73.	6 31.2 0 58.0	7.5	< 0.01 < 0.01	0.02 0.12	9.7 14.2	108 94	1	80 3.6 02 4.0	4.8	170
Octo		/Geomean	275.1	0.4 1	2.5 0		62.2 55.5	262.2 7	7.6 7.7	7	7.5 354	4 254		4.5 4.5	330	203 162	-	3.1	3.1 8.9				.34 0.34	36.7			2.77 0.84	2.77 61.	5 61.0	4.7	0.01	0.01	10.6	80 81		89 3.9	6.9 -	11 3 71.1
Octo		Min Max	268.8 282.7	10.6 1	0.9 0 3.7 0		69.2	255.5 7 269.2 7	7.8 7.8	8	7.4 268	6 344		2.6 2.6 5.6 5.6	275 446	162 244		< 2 < 4	2 7.2 4 9.9	9 7.67		0	.50 0.50	31.5	39.1 47.9		0.84 4.40	0.84 55. 4.40 71.	5 68.3	7.0	0.01	0.01	8.2 13.3	92 82	1	80 3.8 05 4.0	18.0	42
Nove		/Geomean Min	275.6 268.0	0.0 1	2.5 0	0.0 20	63.0 54.8	263.0 7 254.8 7	7.6		7.5 363	3		3.8 3.8	327		-	3	3 8.8 2 7.9				.32 0.32 .26 0.26	39.1 32.0			2.62 1.20	2.62 59. 1.20 48.	_	4.2	2 < 0.01 3 < 0.01		10.3	89.6	9 7			6 2 68.3
Nove		Max	268.0	0.0 1	3.8			254.8 <i>7</i> 279.3 7	7.8		7.6 676	6		4.8 4.8	389			4	4 10.	3		0	.65 0.65	32.0			3.67	3.67 71.	3	5.2	< 0.01		12.6	107	/	11 3.2		12 00.3
Dece		/Geomean Min	277.8 250.7	0.9 1	2.7 0		64.2 38.5	264.2 7 238.5 7	7.5 7.5	5	7.5 326	6 174		3.3 3.3	321	207	_	2.4	2.4 8.7 2 3.9			0	.24 0.24	39.2			1.85	1.85 56. 1.17 10.		3.2	< 0.01	0.04	9.86 7.01	151 401	1	57 2.6	1.5 -	6.6 1 64.4
Dece		Max	330.8	13.4 1	3.5		04.2	304.2	7.7 7.6	6	7.6 396	6 210		4.2 4.2	371	239	_	3	3 10.4	0 6.20	-	0	.29 0.29	45.2	36.6		3.68	3.68 67.	0 53.5	5.1	< 0.01	0.02	13.1	334 450	3	11 2.9	2.7	12
A	nnual Volume	ie (ML)	110,088	7,009 4,06	4 2	0 99,0	016 99,0	016	-							-						-				-		,	-							-		870.1

PBP – Plant Bypass TBP – Total Bypass Plant (including plant and secondary) SEC – Secondary Bypass Plant

EPE - Enhanced Primary Effluent EPT – Enhanced Primary Treatment

Outfall 10 - Combined, UV-disinfected (FEC + EPE) Outfall 20 - Combined Bypass (RAW + PE + EPE) Outfall 30 - Combined Bypass (RAW + Screened + PE + EPE) FEC – Final Effluent, Combined RAW – Influent BOD₅ – 5-day Biological Oxygen Demand

TSS — Total Suspended Solids TP — Total Phosphorus NH_3 -N — Ammonia as nitrogen

MPW – Membrane Product Water ns – No sample Avg/Geomean –Geomean for E.coli; Avg for others

294 9.1 11.5 0.00 0.00 273 273 7.5 7.6 --- 7.5 367 122 --- --- 4.6 4.6 319 166 --- --- 2.9 2.9 8.31 6.36 --- --- 0.35 0.35 37.0 36.0 --- 301 24.2 11.1 0.00 0.00 271 271 7.5 7.5 --- 7.5 317 101 247 --- 4.0 4.0 296 123 72 --- 2.5 2.5 7.40 4.42 5.83 --- 0.30 0.30 33.9 26.7 10.0

*This table has been updated refer to the addendum attached to the end of this report

CBOD₅ – 5-day Inhibited BOD

Table 4 summarizes the reclaimed water quality sample data from January 1 to December 31, 2024. All parameters except *E. coli* were developed on daily 24-hour composite samples of the recycled water. The *E. coli* testing was conducted on discrete samples collected on a daily basis.

Table 4: 2024 Reclaimed Water Quality

February	Avg Min Max Avg Min	11.3 8.6 12.5 10.7 7.0 12.5 9.1 6.8 12.2 11.2 10.1 12.8	154 130 174 152 149 155 150 135 176 133	2.38 0.21 5.66 1.91 0.22 5.11 1.50 0.11 5.24 0.83	2 <2 3 3 <3 <2 5 2 <2 4	33 25 43 35 25 47 31 20	124 77.2 339 124 100 192	1020 861 1640 1021 923	<1 <1 <1 <1 <1	8.0 7.8 8.1 7.9	<1.0 <1.0 <1.0	9.3 8.4 10.7 10.0	3.12 1.00 5.20 2.7	0.10 0.07 0.14 0.12	600 490 918
February	Max Avg Min Max Avg Min Max Avg Min Max Avg Min Avg Min Avg	12.5 10.7 7.0 12.5 9.1 6.8 12.2 11.2	174 152 149 155 150 135 176	5.66 1.91 0.22 5.11 1.50 0.11 5.24	3 3 <2 5 2 <2	43 35 25 47 31	339 124 100 192	1640 1021 923	<1 <1	8.1 7.9	<1.0	10.7	5.20	0.14	918
February	Avg Min Max Avg Min Max Avg Min Max	10.7 7.0 12.5 9.1 6.8 12.2 11.2	152 149 155 150 135 176	1.91 0.22 5.11 1.50 0.11 5.24	3 <2 5 2 <2	35 25 47 31	124 100 192	1021 923	<1	7.9					
February	Min Max Avg Min Max Avg Min Max Avg Min Max Avg	7.0 12.5 9.1 6.8 12.2 11.2	149 155 150 135 176 133	0.22 5.11 1.50 0.11 5.24	<2 5 2 <2	25 47 31	100 192	923			1.0	10.0	2.7	0.12	500
March April	Max Avg Min Max Avg Min Max Avg Min Max Avg	12.5 9.1 6.8 12.2 11.2 10.1	155 150 135 176 133	5.11 1.50 0.11 5.24	5 2 <2	47 31	192		<1	7.0					588
March I	Avg Min Max Avg Min Max Avg	9.1 6.8 12.2 11.2 10.1	150 135 176 133	1.50 0.11 5.24	2 <2	31		1200		7.8	<1.0	9.1	1.0	0.03	531
March I	Min Max Avg Min Max Avg	6.8 12.2 11.2 10.1	135 176 133	0.11 5.24	<2		141		<1	8.1	1.5	11.0	6.1	0.76	690
April I	Max Avg Min Max Avg	12.2 11.2 10.1	176 133	5.24		20		1,061	<1	7.9	1.1	9.4	2.3	0.11	615
April I	Avg Min Max Avg	11.2 10.1	133		4		102	944	<1	7.8	< 1.0	8.8	0.9	0.06	557
April I	Min Max Avg	10.1		0.83		41	278	1,490	<1	8.0	2.0	10.0	5.9	0.18	845
	Max Avg		126		2	30	104	904	<1	7.9	<1.0	9.5	1.6	0.12	538
	Avg	12.8	1	0.09	<2	23	89.3	836	<1	7.8	<1.0	8.8	1.0	0.09	467
	-		140	2.85	4	38	133	1000	<1	8.0	<1.0	10.4	3.3	0.14	584
	Min	11.4	131	1.04	2	31	94.4	1000	<1	7.8	<1.0	10.4	2.2	0.18	622
May		9.8	96	0.12	<2	25	71.9	717	<1	5.6	<1.0	8.2	0.1	0.06	416
- 1	Max	12.7	152	3.53	3	39	107	1100	<1	8.1	<1.0	11.9	5.8	0.51	704
	Avg	11.9	145	0.51	4	37	100	1060	<1	7.9	1.0	11.5	1.5	0.12	661
June	Min	10.5	132	0.09	<2	27	65.5	747	<1	7.8	<1.0	9.8	0.3	0.06	459
	Max	12.9	153	1.37	6	47	116	1160	<1	8.1	1.5	13.2	2.5	0.20	734
	Avg	12.1	153	0.22	3	20	97.6	1012	<1	8.0	<1.0	9.5	1.2	0.13	638
	Min	11.2	131	0.09	<2	30	80.5	856	<1	7.8	<1.0	8.3	0.7	0.07	516
	Max	13.3	165	1.37	7	43	112	1130	<1	8.1	<1.0	11.4	2.4	0.22	776
	Avg	12.1	145	0.13	2 <2	30 20	96.9	957	<1	7.9 7.7	1 <1.0	9.2 7.8	1.1	0.12	598 480
	Min	10.2	165	0.05	3	48	80.2 110	1020	<1	8.1	1.2	11.1	0.7	0.03	666
	Max	13.2	138	0.44	<2	27	100	958	<1	7.9	<1.0	9.6	2.0	0.24	585
	Avg	0.0	131	0.70	<2	20	82.9	827	<1	7.8	<1.0	8.9	1.2	0.16	515
	Min	13.3	151	4.00	<2	38	111	1030	<1	8.0	<1.0	10.5	5.2	0.12	627
	Max	12.5	150	1.20	3	30	93.0	911	<1	7.9	1	9.7	2.5	0.12	556
	Avg Min	10.9	141	0.18	<2	23	83.9	862	<1	7.8	<1.0	9.1	1.3	0.05	524
	Max	13.7	158	2.65	4	36	107	957	<1	8.1	1.5	10.4	4.1	0.33	593
	Avg	12.5	144	1.56	3	27	97.0	935	<1	7.9	<1.0	9.4	2.6	0.12	545
	Min	11.5	134	0.59	<2	20	82.8	885	<1	7.8	<1.0	8.6	1.6	0.09	508
	Max	13.9	159	2.89	8	36	116	1020	2	8.1	<1.0	10.2	3.7	0.14	592
	Avg	12.7	139	0.70	7	30	162	1109	<1	7.9	1.0	9.3	1.7	0.09	637
	Min	11.7	127	0.20	6	22	97.3	913	<1	7.8	<1.0	8.5	1.2	0.05	535
	Max	13.5	151	2.19	9	39	317	1610	<1	8.0	1.1	10.4	3.1	0.28	895
	Avg	11.5	145	1.06	3	30	111	996	<1	7.9	1.0	9.7	2.0	0.12	599
Annual	Min	0.0	96	0.05	<2	20	66	717	<1	5.6	<1.0	7.8	0.1	0.03	416
Summary	Max	13.9	176	5.66	9	48	339	1640	<1	8.1	2.0	13.2	5.2	0.76	918

Table 5 summarizes the effluent chronic and acute toxicity testing. Both acute and chronic toxicity tests were carried out by contract laboratories in accordance with the Environment Canada Biological Test Methods (Environment Canada 1990 and 1992). The acute testing included 48-hour Rainbow Trout static toxicity, 48-hour static toxicity using *Daphnia magna* and 15-minute Microtox tests using luminescence bacteria. Seven-day *Ceriodaphnia dubia*, *Fathead minnows* and three-day P. Subcapitata survival and reproductive impairment tests were used to determine chronic toxicity. No effluent toxic events were observed in 2024.

		Microtox	Daphnia Magna	Rainbow Trout	Ceriodaphnia Dubia	Fathead Minnows	Pseudokirchneriella				
Dates	Quarter				Survival	Survival					
		% of Control	LC ₅₀ (% vol/vol) ¹	LC ₅₀ (% vol/vol)	LC ₅₀ (% vol/vol)	LC ₅₀ (% vol/vol)	IC ₂₅ (% vol/vol) ²	NOEL (%) ³	LOEL (%) ⁴	TOEL (%) ⁵	Toxic Units(TU) ⁶
1/9/2024		>91	>100	>100							
2/6/2024	1	>91	>100	>100	>100*	>100	>91	<2.8	2.8	NA	>35.7
3/5/2024		>91	>100	>100							
4/9/2024		>91	>100	>100							
5/9/2024	2	>91	>100	>100	>100	>100	>91	11	23	15.91	9.1
6/6/2024		>91	>100	>100							
7/23/2024		>91	>100	>100							
8/14/2024	3	>91	>100	>100	>100	>100	>91	91	>91	NA	1.1
9/11/2024		>91	>100	>100							
10/8/2024		>91	>100	>100							
11/4/2024	4	>91	>100	>100	>100	>100	>91	5.7	11.4	8.061	17.5
12/12/2024		>91	>100	>100							

Table 5: 2024 Effluent Toxicity

Table 6 summarizes the proficiency testing of the Gold Bar WWTP Laboratory. It includes the Laboratory z-scores achieved from analyzing proficiency testing (PT) samples for constituents required by the Approval to Operate. The 2024 PT samples were provided by the Canadian Association for Laboratory Accreditation (CALA). A PT scores greater than or equal to 70 or z-scores less than or equal to 3.000 are considered acceptable for CALA PT.

		ŗ	Н		BOD	C	-BOD		TSS	N	IH3-N		TP	Ŀ	E.coli
Study	Date	PT Score	Avg. z-score												
PTC	Mar-23	97	0.05	98	0.11	98	-0.01	96	0.20	90	0.82	97	0.19	88	-0.79
PTC	Oct-23	91	-0.15	97	0.04	92	-0.17	98	-0.09	96	-0.17	96	0.28	93	-0.26

Table 6: 2024 Summary of Gold Bar Wastewater Proficiency Testing

pH by manual meter; NH3-N by AA3; TP by AA3; E.coli by MF

 $^{^1\}text{LC}_{50}$ - % effluent concentration at which there is a 50% mortality of test organisms; $^2\text{IC}_{25}$ - % effluent concentration at which there is a 25% reduction in growth or reproduction of test organisms; $^3\text{NOEL}$ - the concentration at which there was no observed effect level; $^4\text{LOEL}$ - the concentration at which you start seeing the lowest observable effect; $^5\text{TOEL}$ = NOEL/LOEL; ^6TU - the ratio of the concentration observed divided by the concentration for 50% inhibition. *Collection date 02/13/2024.

In 2024, a total of 107,555 million litres (ML) of wastewater was conveyed to the plant. Secondary treatment and UV disinfection was provided to 99,979 ML (93.0%) of the total raw influent flow with 4,226 ML (3.9%) of reclaimed water provided to industrial customers.

Assessment of Annual Monitoring Results

The Gold Bar WWTP Effluent Limit Performance (WELP) index for 2024 was 23.87% (Figure 1). The 2024 index was higher than the five-year average of 19.12% due to a continued focus on sustaining system reliability with maintenance and capital work and maximizing the number of process tanks/equipment in service. Additionally, there was good performance of Ostara Nutrient Recovery Facility for supernatant treatment. Figure 2 shows the annual WELP from 2005 to 2024, including the five-year average.

Figure 1: 2024 Monthly Gold Bar WWTP Wastewater Effluent Limit Performance (WELP) Index

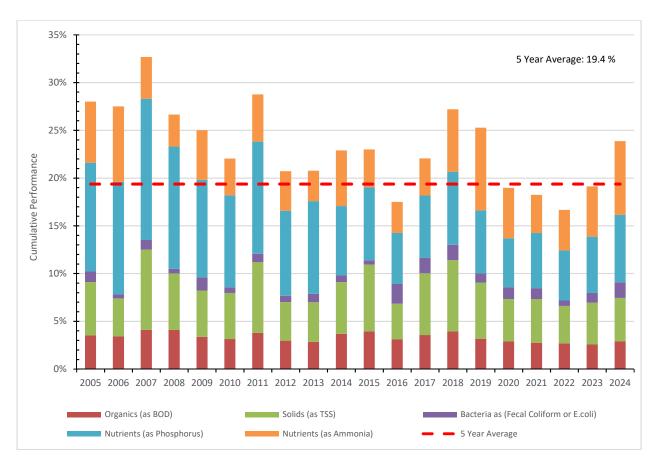


Figure 2: Gold Bar WWTP Wastewater Effluent Limit Performance (WELP Index) 2005-2024

For 2024, all of the monthly limits for Approval to Operate discharge parameters (Table 1) were met.

Chemicals Added to the Wastewater Treatment Process

As per Section 6 of the Operations Plan, the following chemicals are used in the wastewater treatment process:

- Secondary Alum
- EPT Alum
- EPT Polymer
- DAF Polymer
- Membrane Bleach
- Ostara Magnesium Chloride
- Ostara Caustic

Daily and monthly consumption of these chemicals is summarized in Appendix B.

Names of Supervising Operators

Table 7 lists all certified wastewater treatment operators, their level of certification, and their positions at Gold Bar WWTP as of December 2024. Supervising operators are also listed in the Operations Monthly Summaries in Appendix C.

Table 7: List of Certified Wastewater Treatment Operators (as of December 2024)

Name	Title	Wastewater Treatment Certification Level
Jones, Kira I	Coordinator, Hazardous Energy Isolation	IV
Lekamwasam, Janaka	Operator Crew Leader	IV
Nunes, Michael	Operator Crew Leader	IV
Penner, Jody	WWTP Lead Operator	IV
Sanche, Dagny	Coordinator, Operations Training	IV
Sandouga, Sam	Operator Crew Leader	IV
Baker, Cole	Operator Crew Leader	IV
Nieuwenhuis, Andrew	Operator Crew Leader	IV
Kelly, Adam	WWTP Operator	IV
Jama, Yusuf	WWTP Operator	IV
Omeragic, Armen	WWTP Lead Operator	IV
Holden, Derek	WWTP Operator	IV
Vogelgesang, Ryan	WWTP Operator	IV
Rees, Emma	WWTP Lead Operator	IV
Paglicauan, Jermine	Engineer, Operations	IV
Barrett, Jeremy L	Manager, Process Risk & Integration	III
Li, Bing (Frank)	WWTP Operator	III
Budden, Curt	Coordinator, Operations Shutdown	III
Rindero, Billy	Clover Bar Operations Crew Leader	III
Hahn, Kevin	Coordinator, Operations Shutdown	III
Jordan, Bradley	Coordinator, Operations Shutdown	III
Diletzoy, Kyle	WWTP Lead Operator	III
Downey, Anthony	WWTP Lead Operator	III
Lorenz, Tory	WWTP Operator	III
Ozimko, Michael	WWTP Operator	III
Price, Jeremy	WWTP Operator	III
Cousins, Kenzie	Manager, Operations Support & Training	II
Gordon, Allan	Manager, Operations	II
Gilker, Michael	WWTP Operator	II
Furber, Brandyn	WWTP Operator	II
Marling, Connor	WWTP Operator	1
Craig, Aric	WWTP Operator	I

Uncommitted Hydraulic Reserve Capacity

In 2024, Gold Bar WWTP received a total dry weather volume of 104,205 ML. This volume is the sum total of Outfall 10 effluent (99,979 ML) and membrane reclaimed water (4,226 ML). Outfall 10 effluent also includes wet weather flow that did not result in secondary bypass and any additional wet weather flow that had secondary treatment during secondary bypass events.

The average dry weather flow in 2024 was 285 million litres per day (MLD). However, the true dry weather flow was lower than 285 MLD and was approximately 282 MLD. The true dry weather average flow excludes additional flow to the plant during snow melt or rainfall, but includes inflow and infiltration (I&I). The total true dry weather volume was approximately 103,124 ML.

Based on 310 MLD of average secondary treatment capacity and a true dry weather average flow of 282 MLD, the uncommitted hydraulic reserve capacity for secondary treatment in 2024 was 28 MLD.

Wet Weather Summary

In 2024, Gold Bar WWTP had 67 days of secondary and primary plant bypasses. The total volume of secondary bypass was 3,351 ML. In addition, the total primary bypass volume was 355 ML.

There were 6 significant wet weather events with inflows to the plant greater than 1,200 MLD, all 6 resulted in a main plant bypass. The plant received a peak flow rate of approximately 1,675 MLD on August 5, 2024. The record peak flow of 2,298 MLD occurred on June 28, 2022.

Summary of Operational Issues

Key operational activities, issues, and remedial actions are outlined in the Operations Monthly Summaries in Appendix C.

2024 Annual Air Pollution Control System Report

Table 8 and Table 9 describe the air pollution control system and ambient air monitoring limits and monitoring requirements. Note Scrubber 5 and Scrubber 6 were commissioned and put into operation in 2024.

Table 8: Air Pollution Control System Operating Limits (Approval to Operate Table 5-2)

Air Pollution Control System	Monitoring Location	Parameter	Limit
East scrubber-scrubber 1; West scrubber-scrubber 2;	Blowdown recirculation line before chemical	рН	≥ 8.0
EPT scrubber-scrubber 3; Fermenter scrubber- scrubber 4 Scrubber 5 Scrubber 6	makeup of each wet scrubber	ORP	≥ 300 mV
N/A	Ambient air monitoring station	H ₂ S, NO ₂ , and SO ₂	After ambient air monitoring station commissioned: Meet the latest Alberta Ambient Air Quality Objectives

Table 9: Monitoring and Reporting - Air Pollution Control Systems and Ambient Air (Approval to Operate Table 6-2)

Source	Parameter	Frequency	Method of Monitoring	Sample Location		
Carbon scrubber for grit recovery facility, during operation seasons	Temperature	Continuous	Online temperature transmitter, record daily average	Influent air stream		
	Differential air pressure	Continuous	Online differential air pressure gauge, record daily average	Influent and effluent air stream		
Carbon scrubber for grit recovery facility, during operation seasons; Carbon scrubber for screening	H ₂ S	Continuous, effective July 1, 2020	Online H ₂ S sensor, record daily average	Effluent air stream of each carbon scrubber		
building 2/3; Carbon scrubber for grit building 2	H ₂ S	Annually	Manual stack survey, as per the latest Alberta Stack Sampling Code	Effluent air stream of each carbon scrubber		
Carbon scrubber for Clover Bar biosolids dewatering building	H ₂ S	Weekly	Portable low range H ₂ S analyzer, as per the manufacturer's specifications, grab sample	Effluent air stream of the carbon scrubber		
	H ₂ S	Annually	Manual stack survey, as per the latest Alberta Stack Sampling Code	Effluent air stream of the carbon scrubber		
East scrubber-scrubber 1; West scrubber-scrubber 2;	pН	Continuous	Online pH sensor, record daily average	Recirculation blowdown line,		
EPT scrubber-scrubber 3; Fermenter scrubber-scrubber 4 Scrubber 5 Scrubber 6	ORP	Continuous	Online ORP sensor, record daily average	before addition of chemical makeup of each wet scrubber		

Source	Parameter	Frequency	Method of Monitoring	Sample Location
East scrubber-scrubber 1; West scrubber-scrubber 2; EPT scrubber-scrubber 3;	H ₂ S	Continuous, effective July 1, 2020	Online H ₂ S sensor, record daily average	Influent air stream of each wet scrubber
Fermenter scrubber-scrubber 4 Scrubber 5 Scrubber 6	H ₂ S	Continuous, effective July 1, 2020	Online H ₂ S sensor, record daily average	Effluent air stream of each wet scrubber
	H ₂ S	Annually	Manual stack survey, as per the latest Alberta Stack Sampling Code	Effluent air stream of each wet scrubber
Ambient air	H ₂ S, NO ₂ , and SO ₂ Temperature Wind speed Wind direction	After ambient air monitoring station commissioned:	Air Monitoring Directives, as amended, record 1- hour average and 24-hour average	Ambient air monitoring station
Public odour complaints	N/A	When occurring	Document when Gold Bar Wastewater Treatment Plant is alleged and confirmed to be odour source	N/A

Summary of Air Pollution Control System Monitoring

Table 10 and Table 11 contain a monthly summary of the air pollution control system monitoring data. The data is split into two tables for ease of viewing. Appendix D contains the daily air pollution control system data.

Table 10: Air Pollution Control System Report - Part I

Manth	Downwoodow	January	February	March	April	May	June	July	August	September	October	November	December
Month	Parameter	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg
	рН	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.3	N/A	N/A
Scrubber 1	ORP (mV)	671.4	670.0	670.1	670.1	673.8	669.3	669.9	669.7	670.4	696.6	N/A	N/A
(East)	H2S In (ppm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	N/A	N/A
	H2S Out (ppb)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	N/A	N/A
	рH	9.8	9.8	9.8	9.8	9.8	9.8	N/A	N/A	N/A	N/A	N/A	N/A
Scrubber 2	ORP (mV)	667.6	670.1	667.8	669.1	668.3	667.5	N/A	N/A	N/A	N/A	N/A	N/A
(West)	H2S In (ppm)	0.1	0.0	1.4	1.5	1.4	2.5	N/A	N/A	N/A	N/A	N/A	N/A
	H2S Out (ppb)	0.0	0.0	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A	N/A
	рH	9.8	9.8	9.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Scrubber 3	ORP (mV)	701.1	705.6	696.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
(EPT)	H2S In (ppm)	1.4	0.6	2.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	H2S Out (ppb)	1059.8	304.8	726.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	рН	9.8	9.8	9.8	9.8	9.5	9.9	9.9	9.9	9.9	9.9	10.0	10.0
Scrubber 4	ORP (mV)	678.7	670.4	669.8	670.0	650.2	690.8	687.3	690.8	689.6	681.4	674.1	688.4
(Fermenter)	H2S In (ppm)	7.3	6.1	4.1	5.6	8.3	5.9	9.7	11.0	29.5	26.8	19.5	12.7
	H2S Out (ppb)	844.6	1107.0	230.2	359.9	990.6	154.2	0.6	0.7	463.0	2268.3	1405.0	497.4
	рH	N/A	N/A	N/A	9.5	N/A	N/A	9.5	9.6	9.5	9.5	9.5	9.5
Scrubber 5	ORP (mV)	N/A	N/A	N/A	670.3	N/A	N/A	670.1	669.5	670.2	670.1	703.4	670.0
ociubbei o	H2S In (ppm)	N/A	N/A	N/A	5.4	N/A	N/A	6.6	6.8	7.8	6.7	2.6	2.0
	H2S Out (ppb)	N/A	N/A	N/A	15.3	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
	рН	N/A	N/A	N/A	N/A	9.5	9.6	9.5	9.6	9.5	9.5	9.6	9.5
Scrubber 6	ORP (mV)	N/A	N/A	N/A	N/A	665.6	698.4	670.2	669.7	670.2	670.2	665.4	709.0
Colubbel 0	H2S In (ppm)	N/A	N/A	N/A	N/A	3.7	0.0	6.6	6.8	8.1	6.7	2.9	2.0
	H2S Out (ppb)	N/A	N/A	N/A	N/A	22.0	8.8	19.4	2.1	0.0	0.0	0.0	0.0

Table 11: Air Pollution Control System Report - Part II

Month	<u> </u>	Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
	-	H₂S Out (ppb)	H₂S Out (ppb)	H₂S Out (ppb)
January	Avg	2.3	47.1	N/A
February	Avg	0.0	15.0	N/A
March	Avg	0.0	11.4	N/A
April	Avg	7.7	854.2	N/A
May	Avg	8.1	947.9	N/A
June	Avg	8.1	2941.9	N/A
July	Avg	6.1	2434.2	N/A
August	Avg	1.1	592.0	N/A
September	Avg	0.7	508.9	N/A
October	Avg	11.8	1549.1	N/A
November	Avg	23.5	519.8	N/A
December	Avg	18.1	434.0	N/A

The annual manual stack survey was submitted to AEPA on October 30, 2024.

Assessment of Monitoring Results

For each wet scrubber, the daily average ORP and pH was maintained above 300 mV and 8, respectively throughout the year in 2024. Refer to Table 12, Summary of Scrubber Operational Issues for more information.

Chemicals Consumed by Scrubbers

As per Section 6 of the Operations Plan, sodium hypochlorite (bleach) and caustic soda are used in the scrubbers for oxidization of H_2S and pH control, respectively. Daily and monthly consumption of these chemicals is summarized in Appendix E.

Summary of Air Pollution Control System Operational Issues

Table 12 is a summary of operational issues encountered by each air pollution control system, and the remedial actions taken to resolve the issues. Scrubber 5 and 6 were completed and commissioned in 2024. This involved several shutdowns of the EPT Scrubber, West Scrubber, Scrubber 5 and Scrubber 6 to facilitate the switchover and testing of the new scrubbers. On July 16, 2024 a 24-hour H₂S exceedance occurred at the Air Quality Monitoring Station (AQMS) during a scrubber outage which was investigated and determined to not be a result of the outage.

Table 12: Summary of Scrubber Operational Issues

Scrubber Name	Date/Time of Shutdown	Date/Time Returned to Service	Total Time Shutdown (hr)	Fence Line H2S Readings Taken?	Operational Issue	Actions Taken
Scrubber 2 (West)	1/2/2024 0:35	1/2/2024 1:04	0.5	No - shutdown less than 2 hours	Lost ORP for an hour. Bleach pump tube failure.	Shut down scrubber for troubleshooting. Switched bleach pumps.
Scrubber 2 (West)	1/4/2024 19:11	1/4/2024 21:58	2.8	Yes	Recirculation pump tripped and not starting.	Maintenance called in.
Scrubber 1 (East)	1/11/2024 17:10	1/11/2024 18:39	1.5	No - shutdown less than 2 hours	Foaming in scrubber tower.	Drained and filled scrubber tower.
Scrubber 1 (East)	1/11/2024 19:52	1/11/2024 20:31	0.7	No - shutdown less than 2 hours	Foaming in scrubber tower.	Drained and filled scrubber tower.
Scrubber 1 (East)	1/14/2024 18:42	1/14/2024 19:28	0.8	No - shutdown less than 2 hours	Foaming in scrubber tower.	Drained and filled scrubber tower.
Scrubber 1 (East)	1/15/2024 14:24	1/15/2024 14:40	0.3	No - shutdown less than 2 hours	Foaming in scrubber tower.	Drained and filled scrubber tower.
Scrubber 1 (East)	1/15/2024 23:24	1/16/2024 1:07	1.7	No - shutdown less than 2 hours	Foaming in scrubber tower.	Drained and filled scrubber tower.
Scrubber 1 (East)	1/16/2024 2:44	1/16/2024 3:36	0.9	No - shutdown less than 2 hours	Foaming in scrubber tower.	Drained and filled scrubber tower.
Scrubber 1 (East)	1/16/2024 14:45	1/16/2024 15:24	0.7	No - shutdown less than 2 hours	Foaming in scrubber tower.	Drained and filled scrubber tower. Calibrated ORP meter.
Scrubber 3 (EPT)	2/5/2024 9:25	2/5/2024 15:57	6.5	Yes	Low recirculation flow.	Cleaned scrubber nozzles.
Scrubber 1 (East)	2/8/2024 7:31	2/8/2024 8:11	0.7	No - shutdown less than 2 hours	Blower belt required replacement.	Blower belt replaced. Recirculation pump remained running.
Scrubber 2 (West)	2/17/2024 21:43	2/28/2024 13:11	255.5	No - scrubber not shut down	Scrubber tower level slowly dropping.	Checked inline filters, bypassed softener.
Scrubber 4 (Fermenter)	2/21/2024 8:06	2/21/2024 8:21	0.2	No - shutdown less than 2 hours	Bleach pump tube failure.	Maintenance replaced tube.
Scrubber 2 (West)	3/27/2024 10:12	3/27/2024 13:43	3.5	Yes	Bleach pump air relief valve passing. Recirculation pump seized.	Maintenance repaired bleach pump air vent and recirculation pump.

Scrubber Name	Date/Time of Shutdown	Date/Time Returned to Service	Total Time Shutdown (hr)	Fence Line H2S Readings Taken?	Operational Issue	Actions Taken
Scrubber 4 (Fermenter)	4/8/2024 8:49	4/8/2024 11:01	2.2	Yes	Maintenance required.	Recirculation pump alignment and blower work.
Scrubber 3 to Scrubber 5	4/24/2024 7:48	4/24/2024 8:45	1.0	No - shutdown less than 2 hours	No issue.	Shut down Scrubber 3. Started Scrubber 5.
Scrubber 5 to Scrubber 6	4/30/2024 9:56	4/30/2024 10:04	0.1	No - shutdown less than 2 hours	No issue.	Shut down Scrubber 5. Started Scrubber 6.
Scrubber 1 (East)	5/1/2024 15:04	5/1/2024 16:06	1.0	No - shutdown less than 2 hours	Maintenance required.	Fan belt change.
Scrubber 1 (East)	5/3/2024 8:26	5/4/2024 0:06	15.7	Yes	Foaming in scrubber tower.	Drained and filled scrubber tower. Opened Channel 1 gates to try and flush foam.
Scrubber 1 (East)	5/16/2024 18:27	5/16/2024 19:29	1.0	No - shutdown less than 2 hours	Foaming in scrubber tower.	Drained and filled scrubber tower.
Scrubber 2 (West)	5/22/2024 9:35	5/22/2024 11:12	1.6	No - shutdown less than 2 hours	Maintenance required.	Fan belt change.
Scrubber 4 (Fermenter)	5/27/2024 8:23	5/27/2024 8:53	0.5	No - shutdown less than 2 hours	Bleach pump failure.	Maintenance repaired.
Scrubber 4 (Fermenter)	5/27/2024 10:37	5/27/2024 13:09	2.5	Yes	Both bleach pumps failed.	Maintenance repaired.
Scrubber 4 (Fermenter)	6/11/2024 9:03	6/11/2024 16:03	7.0	Yes	Bleach leak on pipe above recirculation pump.	Drained, flushed, and isolated for repairs.
Scrubbers 1, 2, 4, and 6	6/13/2024 7:14	6/13/2024 8:49	1.6	No - shutdown less than 2 hours	Short power outage	Planned outage for transformer switching
Scrubbers 1 and 4	6/19/2024 7:01	6/19/2024 13:51	6.8	Yes	HEI	Shut down scrubbers 1 and 4 for sump tie ins.
Scrubber 4 (Fermenter)	7/2/2024 7:54	7/2/2024 8:58	1.1	No - shutdown less than 2 hours	HEI	Scrubber 4 shut down for check valve replacement.
Scrubber 6	7/3/2024 2:13	7/3/2024 2:59	0.8	No - shutdown less than 2 hours	ORP dropped.	Allowed ORP values to restore and restarted scrubber.
Scrubber 4 (Fermenter)	7/3/2024 14:05	7/3/2024 15:37	1.5	No - shutdown less than 2 hours	Leaking check valve on caustic pump discharge.	Shut down scrubber, flushed and locked out for repair.
Scrubber 6 to Scrubber 5	7/8/2024 10:56	7/8/2024 11:15	0.3	No - shutdown less than 2 hours	No issue.	Shut down Scrubber 6. Started Scrubber 5.
Scrubber 5 & Scrubber 2 to Scrubber 6	7/16/2024 9:59	7/16/2024 14:24	4.4	Yes	Leak in caustic overpressure tank return line piping.	Shut down Scrubber 2. Started Scrubber 6. Flush, drain, and isolate for repairs.
Scrubber 6 & Scrubber 5 to Scrubber 2	8/21/2024 8:02	8/21/2024 8:18	0.3	No - shutdown less than 2 hours	DeviceNet changes required.	Shut down Scrubber 5. Started Scrubber 2 as backup.
Scrubber 2 to Scrubber 5	8/21/2024 15:12	8/21/2024 15:22	0.2	No - shutdown less than 2 hours	No issue.	Shut down Scrubber 2. Started Scrubber 5.

Scrubber Name	Date/Time of Shutdown	Date/Time Returned to Service	Total Time Shutdown (hr)	Fence Line H2S Readings Taken?	Operational Issue	Actions Taken
Scrubber 5	9/19/2024 7:50	9/19/2024 8:15	0.4	No - shutdown less than 2 hours	Scrubber 5/6 shutdown for power switch	Scrubber 5 Shutdown to switch power
Scrubber 6	9/19/2024 7:51	9/19/2024 8:18	0.5	No - shutdown less than 2 hours	Scrubber 5/6 shutdown for power switch	Scrubber 6 Shutdown to switch power
Scrubber 5	9/19/2024 10:17	9/19/2024 10:34	0.3	No - shutdown less than 2 hours	Scrubber 5/6 shutdown for power switch	Scrubber 5 Shutdown to switch power
Scrubber 6	9/19/2024 10:17	9/19/2024 10:34	0.3	No - shutdown less than 2 hours	Scrubber 5/6 shutdown for power switch	Scrubber 6 Shutdown to switch power
Scrubber 5	10/3/2024 11:03	10/3/2024 11:51	0.8	No - shutdown less than 2 hours	Scrubber 5 shutdown for maintenance	Scrubber 5 shutdown for repairs
Scrubber 4 (Fermenter)	10/7/2024 10:00	10/7/2024 11:03	1.1	Yes	Tube Failure on both bleach pumps	Shut down Scrubber to repair tubes
Scrubber 1 (East)	10/7/2024 10:02	10/7/2024 11:00	1.0	Yes	Tube Failure on both bleach pumps	Shut down Scrubber to repair tubes
Scrubber 6	10/15/2024 9:36	10/15/2024 10:09	0.6	No - shutdown less than 2 hours	Scrubber 6 down for an oil change	Scrubber 6 down for oil change
Scrubber 1 (East)	11/25/2024 10:06	TBD	N/A	No - Notification sent to AEPA of Shutdown	No load feeding the scrubber, continued running would cause potential freezing issues	Shut down Scrubber 1 until further notice
Scrubber 6	11/25/2024 12:47	11/25/2024 14:21	0.5	No - shutdown less than 2 hours	Scrubber 6 exhaust fan loose belt.	Scrubber 6 shutdown to tighten the belt.
Scrubber 5	11/26/2024 12:44	11/26/2024 13:44	0.5	No - shutdown less than 2 hours	Maintenance PM on potable water backflow preventer	Scrubber shutdown for maintenance PM
Scrubber 6	11/26/2024 12:45	11/26/2024 13:46	0.3	No - shutdown less than 2 hours	Maintenance PM on potable water backflow preventer	Scrubber shutdown for maintenance PM
Scrubber 6	12/16/2024 9:47	12/16/2024 10:00	0.2	No - shutdown less than 2 hours	Scrubber 6 DNET issue	Scrubber 6 shutdown for DeviceNet update
Scrubber 5	12/16/2024 9:47	12/16/2024 10:23	0.6	No - shutdown less than 2 hours	Scrubber 5 DNET issue and PCP - 74381 required oil change	Scrubber 5 shutdown for DeviceNet update and pump oil change

2024 Annual Ambient Air Report

Summary of Ambient Air Monitoring

The ambient air quality monitoring station (AQMS) was commissioned as of June 30, 2022. For 2024, all ambient air monitoring was completed using the AQMS. Table 13 shows the monthly summary of results from the AQMS including H₂S, NO₂, SO₂, temperature, wind speed, and wind direction. The table shows the results of the 1-hour average data for 2024.

Table 13: Summary of Ambient Air Monitoring Results - Ambient Air Quality Monitoring Station

Month	Parameter	Min	Avg	Max
January	SO ₂ (ppbv)	0.4	3.3	37.9
	NO ₂ (ppbv)	2.8	19.8	44.3
	H ₂ S (ppbv)	0.0	0.8	11.3
	Wind Speed (m/s)	0.0	1.1	5.0
	Wind Direction (°)	-	210.9	-
	Temperature (°C)	-36.2	-12.4	-12.3
February	SO ₂ (ppbv)	0.7	2.7	25.2
	NO ₂ (ppbv)	1.4	16.5	48.7
	H ₂ S (ppbv)	0.0	0.5	15.2
	Wind Speed (m/s)	0.0	1.3	4.5
	Wind Direction (°)	-	213.1	-
	Temperature (°C)	-22.8	-5.6	11.0
March	SO ₂ (ppbv)	0.0	3.1	37.9
	NO ₂ (ppbv)	1.0	11.4	53.2
	H ₂ S (ppbv)	0.0	0.3	7.1
	Wind Speed (m/s)	0.0	1.5	4.5
	Wind Direction (°)	-	187.5	-
	Temperature (°C)	-28.9	-3.9	16.3
April	SO ₂ (ppbv)	0.0	2.1	26.5
	NO ₂ (ppbv)	0.7	7.2	40.2
	H ₂ S (ppbv)	0.0	0.8	13.5
	Wind Speed (m/s)	0.0	2.0	6.9
	Wind Direction (°)	1	221.7	-
	Temperature (°C)	-6.3	6.4	20.6
May	SO ₂ (ppbv)	0.0	1.7	32.3
	NO ₂ (ppbv)	0.7	5.4	29.1
	H ₂ S (ppbv)	0.0	0.5	24.1
	Wind Speed (m/s)	0.0	1.9	6.5
	Wind Direction (°)	-	207.9	-
	Temperature (°C)	-0.6	11.2	25.2
June	SO ₂ (ppbv)	0.0	1.7	23.6
	NO ₂ (ppbv)	0.4	4.5	23.6
	H ₂ S (ppbv)	0.0	0.9	11.2
	Wind Speed (m/s)	0.1	2.0	6.0
	Wind Direction (°)	ı	207.0	-
	Temperature (°C)	3.4	14.6	26.7

Month	Parameter	Min	Avg	Max
July	SO ₂ (ppbv)	0.0	1.7	23.6
	NO ₂ (ppbv)	0.4	4.5	23.6
	H ₂ S (ppbv)	0.0	0.9	11.2
	Wind Speed (m/s)	0.1	2.0	6.0
	Wind Direction (°)	-	207.0	-
	Temperature (°C)	3.4	14.6	26.7
August	SO ₂ (ppbv)	0.0	0.8	18.8
	NO ₂ (ppbv)	0.6	5.3	25.1
	H ₂ S (ppbv)	0.0	1.9	32.1
	Wind Speed (m/s)	0.0	1.7	6.4
	Wind Direction (°)	-	213.2	-
	Temperature (°C)	10.7	21.5	35.5
September	SO ₂ (ppbv)	0.0	1.1	34.9
	NO ₂ (ppbv)	0.3	7.0	30.8
	H ₂ S (ppbv)	0.0	1.7	35.8
	Wind Speed (m/s)	0.0	1.3	5.1
	Wind Direction (°)	-	230.7	-
	Temperature (°C)	2.9	14.6	31.7
October	SO ₂ (ppbv)	0.2	2.0	30.4
	NO ₂ (ppbv)	0.6	9.6	30.6
	H ₂ S (ppbv)	0.0	1.8	24.8
	Wind Speed (m/s)	0.0	1.4	6.3
	Wind Direction (°)	-	216.8	-
	Temperature (°C)	-4.0	6.0	22.4
November	SO ₂ (ppbv)	0.4	2.7	24.0
	NO ₂ (ppbv)	0.9	11.7	33.3
	H ₂ S (ppbv)	0.1	1.1	28.9
	Wind Speed (m/s)	0.2	1.3	3.6
	Wind Direction (°)	-	194.8	-
	Temperature (°C)	-18.8	-4.4	15.5
December	SO ₂ (ppbv)	0.9	2.7	28.5
	NO ₂ (ppbv)	1.6	18.2	46.0
	H ₂ S (ppbv)	0.2	1.4	34.6
	Wind Speed (m/s)	0.0	1.1	3.8
	Wind Direction (°)	-	207.5	-
	Temperature (°C)	-23.7	-7.0	6.8

Assessment of Monitoring Results

Table 14 shows an assessment of the monthly results from the AQMS for H₂S, NO₂, and SO₂, as compared to the *Alberta Ambient Air Quality Objectives* (AAAQO). In 2024, there were a total of 124 1-hour H₂S exceedances and 21 24-hour H₂S exceedances of the AAAQO. There were no 1-hour or 24-hour exceedances for NO₂ or SO₂. The majority of the H₂S exceedances occurred in September and October when there was less precipitation to flush the collection system, but the temperatures remained warm. The exceedances tended to occur in the evenings and nights when the temperatures dipped and there was less wind. A similar trend was observed in 2023.

Table 14: Assessment of Results of Ambient Air Monitoring

Month	Parameter	1-hour AAAQO	# of 1-hour Exceedances	24-hour AAAQO	# of 24-hour Exceedances
January	H ₂ S (ppbv)	10	2	3.0	1
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
February	H ₂ S (ppbv)	10	3	3.0	0
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
March	H ₂ S (ppbv)	10	0	3.0	0
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
April	H ₂ S (ppbv)	10	3	3.0	0
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
May	H ₂ S (ppbv)	10	3	3.0	0
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
June	H ₂ S (ppbv)	10	1	3.0	0
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
July	H ₂ S (ppbv)	10	21	3.0	7
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
August	H ₂ S (ppbv)	10	25	3.0	1
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
September	H ₂ S (ppbv)	10	26	3.0	3
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
October	H₂S (ppbv)	10	28	3.0	6
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
November	H ₂ S (ppbv)	10	4	3.0	1
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0
December	H ₂ S (ppbv)	10	8	3.0	2
	NO ₂ (ppbv)	159	0	N/A	N/A
	SO ₂ (ppbv)	172	0	48.0	0

There were also no exceedances of the 30-day objective for SO_2 (11 ppbv), the annual objective for SO_2 (8.0 ppbv), or for the annual objective for NO_2 (24 ppbv).

Summary of Public Odour Complaints

Table 15 shows the number of odour complaints received within the Gold Bar WWTP Odour Response Boundaries and number of complaints where Gold Bar WWTP is the confirmed source of odour based on wind direction, scrubber operation, corroboration with odour model software, ambient H₂S monitoring results, and plant operations/maintenance.

Table 15: Summary of Gold Bar WWTP Odour Complaints

Month	Number of Odour Complaints	Number of Complaints where Gold Bar WWTP is the Confirmed Source of Odour
January	1	0
February	0	0
March	0	0
April	0	0
May	0	0
June	0	0
July	0	0
August	1	1
September	0	0
October	0	0
November	0	0
December	0	0
Total	2	1

Appendix F contains a detailed list of odour complaints including the steps taken to identify the odour sources and remedial actions taken to resolve the odour issues.

2024 Summary of Contraventions and Notifications to AEPA

Table 16 summarized the contraventions to Approval to Operate 639-03-07. There were 4 contraventions in 2024.

Table 16: Summary of Contraventions

Date	Summary of Contravention	AEPA Reference Number
Mar 6, 2024 17:52	On March 6 around 16:30, approximately 1 cubic meter of a mixture of grit, water, and sludge was released from a drain hose onto the ground in Hermitage Park.	
	Contractors had launched a foam cleaning pig in the sludge line from GBWWTP to Hermitage Park and the pig got stuck. The contractor attempted to free the pig using pressurized water. The pig appeared to dislodge, causing the material to release through the drain hose into MH-D2. During this activity, the drain hose dislodged from the maintenance hole and released the material to the ground. The release was contained within the fenced area of the work site and a hydrovac truck removed the material. The spill was reported to the AEPA 24-hour hotline and a 7-day letter was submitted.	425665
May 4, 2024 15:02 AEPA Operator	AEPA 24 hour hotline was notified regarding biosolid spill from contractor truck that occurred at 10:05 am on 88 Avenue and Highway 15. Notified that emergency crews were on site (police and fire truck), less than 30L spilled, and was cleaned up by hydrovac truck. Confirmed there was no	427606
Rebekah	spill into catch basins or waterway and that it was contained on road. Emergency vehicles helped block off lanes for cleanup, while keeping highway open. 7 day letter required.	127 000
July 16, 2024	7-day letter submitted to AEPA by Contractor on behalf of EPCOR for a 24-hour H2S exceedance that occurred concurrently with a scrubber outage, so 7-day letter waiver did not apply.	430514
Nov 15, 2024 14:37 AEPA Operator: Shyla	AEPA was notified that the Scrubber 5 and Scrubber 6 stack heights do not meet the minimum required height above grade of 17.89 m, as per Table 4-1. As per the drawings, the stack heights are 17.826 m. Discrepancy was first noted during stack survey submitted in October.	435266
	7-day letter was submitted.	

Contraventions due to the exceedances of the Air Quality Monitoring Station listed in Table 14 can be referenced in the 2024 Annual Industrial Ambient Air Quality Monitoring Report submitted to AEPA on behalf of EPCOR by a third party consultant.

Table 17 summarizes the notifications to AEPA under Approval to Operate 639-03-07 as per the 2024 Operations Plan. There were 14 notifications in 2024.

Table 17: Summary of Notifications to AEPA

Date	Summary of Notifications	AEPA Reference Number
January 29, 2024 11:45 AEPA Operator: Dave	AEPA 24-hour hotline was notified of planned work on the UV control system from 7am to 2pm on Jan 31, 2024. The work is planned so no interruption to the UV process is anticipated, but this notification is being made as a precaution, as there is always a risk of impact to the UV process.	424440
February 5, 2024 10:30 AEPA Operator: Steven	AEPA was notified via the 24-hour hotline of an up to 6.5 hour outage of EPT Scrubber taking place 02/05/2024 at 10:30 am for maintenance. The scrubber is planned to be back online by 17:00 on 02/05/2024. Additional fence line monitoring for H2S will take place during the outage.	424672
Feb 9, 2024 9:45 AEPA Operator: Raymond	AEPA 24-hour hotline was notified of a planned UV outage starting at 11:00pm on Feb 14 until 11:00am on Feb 15, 2024 to support maintenance on the electrical system. Noted that UV outages are scheduled during low flow to minimize impact on downstream users and the environment.	424824
April 23, 2024 16:00 AEPA Operator Iona May 14, 2024	AEPA 24 hour hotline was notified as a courtesy that as part of the project commissioning Gold Bar WWTP new scrubber #5 will start treating foul air starting on April 24, 2024, replacing Scrubber #3 (EPT Scrubber). All conditions of the approval to operate (i.e. daily average ORP and pH) of the new scrubber 5 are intended to be met, and if not, it will be reported to the 24 hour hotline as an approval violation with a 7 day letter report. No odour issues are anticipated. AEPA was notified via the 24-hour hotline of a planned outage of the	427219
8:10 AEPA Operator: Darren	screen building 2/3 carbon scrubber taking place 05/14/2024 at 8:30 am for media replacement. The scrubber is planned to be back online by 18:00 on 05/15/2024. Additional fence line monitoring for H2S will take place during the outage.	427996
	**UPDATE: Work ended up getting cancelled. EPCOR called back at 923am 05/14/2024 to update AEPA to confirm work will be rescheduled. No scrubber outage took place.	
June 6, 2024 AEPA Operator: Natasha	AEPA 24-hour hotline was notified of a planned outage of the UV disinfection process 8:00am until 9:30 am on June 12, 2024 to support site wide transformer switching maintenance. Noted that UV outages are scheduled during low flow to minimize impact on downstream users and the environment. If there are elevated flows due to rainy weather this work will be rescheduled.	
	AEPA was also notified of a planned outage of the Fermenter Odour Scrubber to take place from 8am-2pm on June 11, 2024 for planned equipment maintenance. Additional fenceline H2S monitoring will take place during the outage.	428864
	**UPDATE: On June 12, 2024 at 10:20, AEPA 24-hour hotline was notified of a reschedule of the planned power outage of the UV disinfection process from 8:00am until 9:30 am on June 13, 2024 to support site wide transformer switching maintenance.	
	Noted that UV outages are scheduled during low flow to minimize impact on downstream users and the environment. If there are elevated flows due to rainy weather this work will be rescheduled.	

Date	Summary of Notifications	AEPA Reference Number
June 17, 2024 14:50 AEPA Operator: Erin	AEPA was notified of a planned outage of the Fermenter Odour Scrubber to take place from 7am-3pm on June 19, 2024 for planned equipment maintenance. Additional fenceline H2S monitoring will take place during the outage.	429246
July 15, 2024 14:08 AEPA Operator: Erin	AEPA was notified of a planned outage of odour Scrubber 2 (West) and Scrubber 5 to take place from 7:30 AM - 2:00 PM on July 16, 2024 for planned equipment maintenance. Additional fenceline H2S monitoring will take place during the outage.	430424
September 4, 2024 12:27 AEPA Operator: Dave	AEPA was notified of a planned outage of the Screen 4-8 Carbon Scrubber taking place on September 5, 2024 from 07:30 to 16:30 to replace the media. Additional fenceline H2S monitoring will take place during the outage.	432577
October 2, 2024 09:47 AEPA Operator: Christopher	AEPA was notified that a commissioning test will be performed on Scrubbers 5 and 6 from October 3, 2024 19:00 to October 4, 2024 03:30. H2S will be brought on site and injected into the scrubbers at concentrations up to 50 ppm to test the designed capacity. We intend to meet all regulatory requirements and no additional odours are expected. H2S readings will be taken with our handheld meter during the test. Note this test was scheduled overnight to limit potential odour/disruption to the community.	433724
October 17, 2024 12:35 AEPA Operator: Darren	AEPA was notified of a variance from the primary treatment target operating capacity. The primary treatment capacity will be reduced from 1200 MLD to 900 MLD from October 19, 2024 to December 1, 2024, at which time the winter target operating capacities will come into effect. The purpose of the variance is to perform preventative maintenance on EPT clarifiers and to support the primary clarifier odour control improvement capital project.	434290
October 24, 2024 12:30 AEPA Operator: Rebekah	AEPA was notified that the ducting collecting foul air from the primary effluent channels was temporarily disconnected on July 8, 2024 to accommodate project work on the primary effluent channels. Foul air from the primary effluent channels is typically directed to Scrubber 1 (East Scrubber), as per our Operations Plan. The ducting is scheduled to be reconnected in June 2025.	434532
November 21, 2024 15:55 AEPA Operator: Taryn	AEPA was notified with an update to REF434290, a variance from the primary treatment target operating capacity. The primary treatment capacity will be further reduced from 900 MLD to 600 MLD from November 23, 2024 to February 14 2025, at which time it will return to the winter target operating capacity of 900 MLD. The purpose of the variance is to perform preventative maintenance on EPT clarifiers and to support the primary clarifier odour control improvement capital project. This work is done over winter months to minimize risk of wet weather flows.	434290
November 25, 2024 10:48 AEPA Operator: Christopher	AEPA was notified that Scrubber 1 (East Scrubber) will be shut down today (November 25, 2024) as there are currently no sources of foul air feeding this scrubber and the scrubber fan is at risk of freezing due to drawing in ambient air. We will notify AEPA when the scrubber is returned to service, if requested. Note that we will also not be reporting the daily average pH, ORP, H2S in, or H2S out for Scrubber 1 while it is offline. AEPA Operator requested follow-up with EPO to determine if 7-day letter is required. EPO confirmed no 7-day letter required. Additional info: As part of capital project work, Channel 1 (including Grit Tanks 1-3 and Primary Clarifiers 3-4) is offline and empty, and the ducting connecting the Primary Effluent channels is disconnected (previously notified under AEPA Ref #434532). Scrubber 1 will resume operation when Channel 1 and associated equipment goes back into service, which is expected to occur in Spring 2025.	435525

2024 Biosolids Program Summary

In 2024, the biosolids management program was able to remove 28,410 dry tonnes (DT) of biosolids from the Clover Bar Lagoons for beneficial reuse. Biosolids production from Gold Bar and Arrow Utilities (previously Alberta Capital Region Wastewater Commission) was 26,152 DT, which increased the storage inventory by 2,258 DT.

Table 18: Summary of Biosolids Program

Beneficial Application Use Method	Application Weight Removed from Lagoons (dry tonnes)	Application Volume (m³)
Nutri-Gold (dewatered material)	9,600	41,715
Nutri-Gold (thickened material)	9,467	
Agricultural Land Application (3rd party)	9,343	144,168
Non-Agricultural Land Application	0	0
Total	28,410	332,666

Appendices G, H, and I contain summaries of the Nutri-Gold, third party agricultural, and non-agricultural land application programs, respectively.

Appendix A – Monthly Plant Performance Reports

PROVIDE	NG HORE	EPCON																			lant Perfori	ter Treatment mance Repor iry 2024																				Digested Studge	e: Total Monthly	ly Volume (ML)		73.0	
			Volume of Flour (ELL) Liquid Stream Guelly																																												
		The state of the s																																													
		1		DTive	ort																																										
			Non UV Disin	nlected	UV Disinfected		рН@25*С				19	(mg/L)		,			0 000	(mg/L)	ş				TP (mg/L)	1				NIG-N (mg	ot)			un-lonized Ni	3-N (mg/L)		TION (mg			NC.	,+NO ₁ (mg/L)	T .		Chloride (m	w(L)		E.col	(Counts/100 mL	1
			8 8		OUTFALL 1	10	8	SO LYMIT		8	8					FRILLS	TE SEE	g	25 5			R 8			TAULT		8	8		E E	8	8	9		8	8	THE STATE OF THE S	8	8	FALL		8	8	TAME .	. 3	FALL 2	THE STATE OF
	leak low		TEME		6		эти	TIME OF		TEME	JIEALL	B B		3	RAW	5	5	E .	C F	E		1	8	-	5		TIME.	TEME	8	5	T-FAL	T-FAL.	JI-FAL		TEME	# L	5	TANE.	TEMAL	50		THANT	1	50	8	5	5
Mon-01 3	8.00 INFs 26.7 0.0	249.8		MPW 11.9		75 RAW	8		7 32		8	В	FEC 39	7E 3.9	800 ₁	BOOs	BOD	BOD _E cB	2 car		8.20	5		PEC 0.23		RAW 43.1	6	6	d	FEC 1	432 B	8	8	RAW 53.5	8	0 1	S.1	8	- 8	FEC 11.5	RAW 73.9	8	6	FEC X10	0^6 X10^	6 X10^6	FEC 14
Wed-03 4	70.1 0.0 22.1 0.0	263.6	0.0 0.0	11.0	0.0 252.6 25	193 7.4 52.6 7.4		7	6 33				4.1 2.4	4.1 3.4	359 340				3	3	8.13 7.96			0.21	g 0.26	41.8 41.8				1.22	1.22			51.0 51.9				1.01		10.2 7.6	79.8 86.8			81.3 93.6			14 23
Pri-05 3	17.8 0.0	262.7	00 0.0 00 0.0	11.7	0.0 251.0 25	50.6 7.5 51.0 7.4			6 29 6 31				21	3.1	332 319						7.81 8.04			0.21		39.2 41.0				1.20	1.46			53.9 55.0			2.6 2.6			7.6	85.2 87.3			94.4 97.8			14
Sun-07 3	00.2 0.0 62.0 0.0	265.0	0.0	11.0	0.0 253.2 25	48.9 7.5 53.2 7.4		7	6 28 5 33				2.6 3.2	2.6 3.2	328 356						7.54 8.12			0.20	7 0.27	35.9 40.4				1.75	1.75			50.6 56.8			29			7.5 7.3	84.6 84.4			98.4 87.3			8 11
	55.3 0.0 28.3 0.0		GO 0.0		0.0 260.2 26	60.2 7.5 51.7 7.5		7	6 33				17 29	3.7 2.9	296 359				2	2	8.42 7.95			0.30	2 0.32	39.7 40.3				2.72	272			51.0 53.4			45			7.0 8.6	97.4 95.2			89.1 107.0			9 15
	35.1 0.0 44.7 0.0				0.0 253.4 25	53.4 7.5 52.5 7.6		7	5 31				2.7 4.2	2.7 4.2	200				3	3	0.66 0.56			0.25	5 0.25	41.6				4.80	4.80			53.1 53.1				1.01		9.3 6.7	91.5 83.2			103.0			14
	44.9 G.0 10.8 G.0					54.2 7.4 55.1 7.5		7	5 30				19	3.9	346				3	3	0.58 0.42			0.30	0.30	41.2				5.85	5.85			56.3 53.9			6.5			7.4	77.5 72.3			91.8			7 9
	10.7 0.0		00 00	11.8	0.0 256.8 25	56.0 7.6 61.1 7.4		7	5 30				55	55	296				3	3	8.06 8.15			0.31	0.31	40.8				6.69	669			53.9 52.0			6.4			61	72.8 77.8			76.9			13
Tue-16 3	49.1 GO	268.5		11.4	0.0 257.1 25	57.1 7.5 57.5 7.4		7	6 33 5 32				14 18	34					2	2	8.15 8.27 9.17			0.20	g 0.26	40.1 40.3 39.4					2.64			54.6 59.8			27	1.01		8.0	77.6 86.8			81.2 90.1			8
Thu-18 3	16.6 0.0	269.3	00 00	11.0	0.0 258.3 25	58.3 7.4 61.1 7.5		7	5 29	s			15	35	250				3	3	9.16			0.30	0.30	41.3				3.85	185 447			60.0			5.1	Lon		6.0	94.0			93.4			6
Sat-20 3	12.8 GD 48.4 GD 35.0 GD	273.5	00 0.0 00 0.0	11.1	0.0 262.4 26	62.4 7.5		7	5 36	2			31 35	3.5	335 286				3	3	9.38 8.88			0.30	0.30	39.1 40.6				2.98	2.98			59.0 56.2			4.4			7.0 8.2	91.1 87.5			98.9 96.4			7
Mon-22 3	40.4 0.0	275.7	0.0 0.0	11.4	0.0 264.3 26	72.8 7.5 64.3 7.5		7	5 36 6 35	5			10 17	3.0	295 349				3	3	7.71 7.59			0.23	3 0.23	38.0				2.39	2.83			57.6 53.6			40 27			7.2 6.7	95.4 112				2.0		4
Wed-24 4	34.8 GO 37.0 GO	276.1	0.0	10.6	0.0 265.5 26	57.8 7.4 65.5 7.5		7	6 36				2.9 3.1	2.9 3.1	292 344				3	3	8.35 8.51			0.24	6 0.26	41.2 40.4				4.46	2.99 4.46			53.0 53.8				1.01		8.3 7.5	143 151			117			120 6
PH-26 3	18.0 0.0 22.4 0.0	275.6	0.0	9.5	0.0 266.1 26	59.9 7.6 66.1 7.5		7	5 20				18 16	3.6 3.6	349 316				2	2	8.26 8.24			0.30	9 0.29	40.7 40.7				3.98	3.98			57.1 56.9			5.5			8.7 9.4	145 148			147	2.3		12
Sun-28 3	62.2 0.0 99.0 0.0	284.0	0.0 0.0	11.5	0.0 272.5 23			7	5 33	1			21	3.1	329 310					2	9.42 8.10			0.3	1 0.31	41.5 40.6				3.35 3.82	135 382			59.5 55.4			46			9.4	132			149			9 11
	65.8 0.0 62.6 0.0		0.0 0.0 28.1 0.0		0.0 277.0 27 0.0 208.6 30	08.6 7.4	7.6		5 30 4 53	192			33 33	33	296 263	179			2		8.17 7.95	6.40		0.30		39.1	32.1			3.30 2.40	130 240			54.7 49.7	43.7		45 17	0	1.05	8.4	198	447		194	1	٥	20 35
Wed-31 3 Average 3	05.6 0.0 52.0 0.0	209.9 272.0	0.0 0.0	11.3	0.0 259.8 25	513 7.4 59.8 7.5	7.6	- 7	5 33	192	-	_	15	4.3 3.5	305 321	179						6.40		- 02		41.5 39.8	32.1	_	_	3.14 3.52	114 152	-		56.0 54.7	43.7	-		0.04 0	.05	7.2 8.0	127 112	447	_	322 119	_	_	29
Minimum 2 Maximum 5	94.0 0.0 62.6 0.0	249.8 347.8	0.0 0.0 28.1 0.0	8.6 12.5	0.0 237.9 2: 0.0 308.6 30		7.6 7.6		4 26 7 53				2.6 5.5	2.6 5.5	250 371	179		- ‹			7.54 9.42			- 02	3 0.23 4 0.34	31.8 43.1	32.1			1.22 6.69	6.69			49.7 60.0	43.7 43.7		2.3 < 6.7 <			6.1 11.5		447 447		74.1 322	20 1	9	120
TOTAL					0 8,055 B,		=			-	-	_			-	-	-	-	-	-	-			-	-	==	-	-		_	-	-	_	-	-	-					-	-	-	-			
* Contact Laborator	y for information	about the qual	ally assurance associati	ated with the result	ts.								RAW INF	Untreated wast	ent into the plant ewater from collec	tion system					FEC OUTFALL 10	UV-disinf	ed post-UV disinfed fected, discharged	d via OUTFALL	PS) 10																						
Table 200		WT 1 5	Enn	nanced Prima	ary Treatment (EPT) Total Bypass YTD (I	Usage	1/25 4-1		VTD.				PE PE 30	Primary Effluer	ed at the Headus at from convention at from convention	nal primaries					OUTFALL 20 OUTFALL 30 MPW	Combine	ed Bypass (RAW + ed Bypass (INF + I ne Product Water	NFS + PE30 +																							
Total Bypass 6	(m) E	6	(11) %	usage 100%	Total Bypass YTD (I	(H) EPI US	E (NI)	% Usage	110				EPT	Primary Effluer Enhanced Print Enhanced Print	sary Treatment	nai primaries disi	crarged via Ou	19E 30			ML MPN	Megaltre	ne Product Water s (1,000,000 Litre) sbable Number	(Emuent re-use	water)																						
Report Comm	ents												EPEPS	Enhanced Print Final Effluent fo	rary Effluent Purn	p Station salment process	(with biological	nutrient removal). F	e-Ultraviolet		NR NS	No Result No Samp	it plo																								
													1	disinfection.				1.1	nnn		AEP	Insufficie Alberts E	ent Sample Drytronment & Part	rks																							
													I	Man	دندرد	е		294	Kend																												
AEP Ref #													Trina	Manning	M(Sc.;	BEEng.		Jeff Charr		vtical Opera	_																										

Appendix A – Monthly Plant Performance Reports

MONDING MORE EPOCH	Gold Bar Wasteward Trademort Plant Plant Performance Report Planty Page Property Company (2014)															
Volume of Flow (ML)	Volume of Flora MR.1. Liquid Stream Docality															
Solidario de Solid																
Non UV Disinfected UV Disinfected pH	No. (V. Davidnost V.Y. Davidnost St. St. St. St. St. St. St. St. St. St															
Point Provide ST T T T T T T T T T T T T T T T T T T	OUTMAL 20 TRAL 30	0 RAW 0 PEC	01.TW1.T0 0.TW1.T0 0.	01 TRAIN 0	OCTUANT SO LIGHT SO LIGHT SO LIGHT SO LIGHT SO LIGHT SO	OF THATO OF THATO OF THATO OF THATO OF THATO OF THATO										
No.	0 766 346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36 34 32 32 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No. C	7 623 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 770 NW 0 0 0 770 NW 1994 NW 1994 1905 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10										
Average 269.2 0.0 273.2 0.2 0.0 19.7 0.0 262.3 262.3 7.4 7.7 Ministrum 311.8 0.0 264.2 0.0 0.0 7.0 0.0 262.9 252.9 7.3 7.7	75 336 92 73 110 92	15 15 209 267 27 22 22 284 267 < 2	2.7 8.31 7.52 0.32 0.1 < 2 6.33 7.52 0.18 0.1	8 34.4 39.9 2.06 2.08	462 48.7 32 < 0.01 0.02	12 5.59 87.0 161 96.0 1.8 3.1 5										
Maximum 578.7 0.0 290.6 5.4 0.0 12.5 0.0 279.2 279.2 7.6 7.7 Geolden	- 7.6 480 92	49 49 421 267 3 	3 10.4 7.52 0.98 0:1 	0 43.3 20.9 5.29 5.39	501 48.7 - 65 < 0.01 0.02	22 120 138 161 174 1.9 3.3 24 1.8 3.2 9.6										
Total Lineary in reference index for apply macross associated in the rain	10 X U.S.S. YO	South Unesmail Influent is to the plant 19 Feb. Unesmail Influent is the plant in plant 19 Feb. Unesmail Theory The Plant Influent is the plant in	ING Insufficient Gample AEP Abarts Environment & Parks													

PROVIDENCE MORE REPORT	Gold Sar Waterman Translation Fland Fland Service State Stat	Digested Shalge: Total Monthly Valume (ML) 76.5
Volume of Flow (ML)	Liquid Stream Quality	
Diffuent		
Non UV Disinfected UV Disinfected pHI()25°C	755 (mg/L) 550(A800, (mg/L) 79 (mg/L) MIG-R (mg/L) on-invited MIG-R (mg/L) 750 (mg/L) NO,A60, (mg/L)	Chloride (mg/L) E. coil (Counts/190 mL)
8 8 001774L19 8 8 1744 174 174 174 174 174 174 174 174 17	THULL S THUL	OCTIVATE OF CALAMA TO CALA
Section Continue		20
Ministrum 2003 0.0 272:1 0.0 0.0 6.8 0.0 26:3 26:3 7.4 7.3 - 7.3 160 Maximum 265:4 0.0 26:9 525 0.0 12.2 0.0 203:1 203:1 7.5 7.7 - 7.6 516	8 - 19 19 29 17 - 42 1 733 48 - 52 17 13 48 - 63 19 17 1 21 13 18 - 63 19 17 1 21 18 18 - 63 19 18 18 18 18 18 18 18 18 18 18 18 18 18	83.8 104 98 2.2 0.9 4 305 458 207 2.4 2.3 32
Geldin	NO	23 16 - 111
Entraced Printsy Teaching (EPT Usage (fr) % Usage Total Byzacs (fr) EPT Usage (fr) % Usage Total Byzacs (fr) EPT Usage (fr) % Usage Total Byzacs (fr) EPT Usage (fr) (fr) % Usage YTD Fr Fr Fr Fr Fr Fr Fr F	PK Primary Effective Connected Cognitive Confidence (Computer Confidence Cognitive Cog	
Rigider Comments The Appendix Appendix supplies for March 15th, 2024 were collected in the curbons, Birth samples were analyzed separate for chemical suprements. The Appendix supplies supplies supplies the Comment of Separate	TETOS Enteres (Prince) Elles Principales III de la Descripción III descripci	

Gold Bar Wastewater Treatment Plant
Plant Performance Report
April 2024

						Digested Studge: Total Monthly Volume (ML) 72.5	
Volume of Flow (ML)				Liquid Stream Quality			
The second secon							
Non UV Disinfected UV Disinfected	oH@25°C TSS (molt.)	BOD _p /cBOD ₁ (mg/L)	TP (mg/L)	NH3-N (moft.)	un-ionized NH3-N (molt.) TKN (malt.) NO ₂ +NO ₃ (mg/L)	Chloride (mo/L) E. coli (Counts/100 mL)	4.)
0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	001747.13 0 01747.13 0	RAW ROLL R	OCILLAL DO OCILLAL DO OCILLAL DO OCILLAL DO OCILLA DO DE	9 TYALO O FEC FE	0147139 00147139 00147139 00147139	9 T T T T T T T T T T T T T T T T T T T	OO TEAL SO
Mon-Part	7	7.5 7.5 200 4	8.88	427 5.66 5.66 4.46 4.46 4.27 4.46 4.2 4.26 4.26 4.26 4.26 4.46 4.26 4.2	51	6.46 102 102 104 107 104 107 104 107 104 107 104 107 107 104 107 107 107 107 107 107 107 107 107 107	21 7 7 6 4 8 11 16 13 12 12 15 5 11 10 12 2 5 11 11 11 11 11 12 12 5 17 7 4 9 3 7 7
Average 358.3 0.0 280.9 4.7 0.0 11.2 0.0 285.0 285.0 Minimum 306.6 0.0 284.1 0.0 0.0 10.1 0.0 253.5 253.5		6.1 6.1 349 121 3.0 3.1 4.1 4.1 299 110 < 2 < 2	8.48 7.33 0.42 0.42 6.00 4.94 0.32 0.32	42.0 40.5 3.79 3.79 24.5 27.2 0.80 0.80	0 39.3 30.4 2.3 < 0.01 0.02	8.65 91.4 161 98.8 6.47 74.4 81.5 83.6 1.3 1.0	. 3
Maximum 747.8 0.0 455.8 134.2 0.0 12.8 0.0 310.2 310.2 GeoMean	7.6 7.7 7.6 498 150	89 89 428 132 4 4 4	9.37 9.72 0.74 0.74	46.5 53.7 7.16 7.16	6 672 60.0 7.6 < 0.01 0.37		- 21
TOTAL 0 8,427 140 0 337 0 7,950 7,950							_
Coreact Laboratory for information about the quality assurance associated with the results Enhanced Primary Treatment (EPT) Uss Total Bypass (In) EPT Usage (In) % Usage Total Bypass YTD (In)	RAW NF NF SEP Usage YTD (Nr) % Usage YTD F 6 30	Ultrastated Influent into the plant Ultrastated withbourset from collection system Influent, received at the Headworks Disversion Structure Primary Effluent from conventional primaries Primary Effluent from conventional primaries Primary Effluent from conventional primaries Arians per Bander from	FEC Combined post-UV disinfection (FE-EPPS) UV-disinfection, disinfection (FE-EPPS) UVFFALL 10 UVFFALL 20 Combined Sprass (RPM PE* EPPS) UVFFALL 30 Combined Sprass (RPM* PF* EPPS) MMW Memtrates Product Visiner (Britishers re-size water)				

						INF	Urtreated wastewater	from collection system		OUTFALL 10	UV-disinfected, discharged via 0
						INFs	Influent, screened at the	e Headworks Diversion Structure		OUTFALL 20	Combined Bypass (RAW + PE -
		Enhanced Prin	nary Treatment (EPT) Usag			PE	Primary Effluent from o	conventional primaries		OUTFALL 30	Combined Bypass (INF + INFS
Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD	PE 30		conventional primaries discharged via Outli	il 30	MPW	Membrane Product Water (Efflu
			•			EPT	Enhanced Primary Trea	atment		ML	Megalitre (1,000,000 Litre)
						EPE	Enhanced Primary Efflu	uert		MPN	Most Probable Number
						EPEPS	Enhanced Primary Efflu	uent Pump Station		NR	No Result
Report Comments						FE		ondary treatment process (with biological	utrient removal). Pre-Ultraviolet	NS	No Sample
							disinfection.			INS	Insufficient Sample
										AEP	Alberta Environment & Parks
							Mann	-	Juff Chini		
						-	Trina Manning	M.Sc.; P.Eng.	Jeff Charrois PhD		
AEP Ref#							Senior Manager, WWTI	P Operations	Senior Manager, Analytical Op	erations	

																																				Digested Siu	udge: Total Month	nly Volume (ML)		76.9	4
		Volume o	of Flow (ML)																			L	iquid Stream	Quality																	
ž.																																									
la de			Effluent																																						
															BOD ₁ (mg/L)																		NO ₂ +NO								
	- 1	Non UV Disint	fected	UV Disinfected		он⊕25 С				188 (8	noL)			ВООУС	SOD, (mg/L)				TP 6	no/L)				NH3-N (mg	UL)		un-306	nized NH3-N (mo/L)		TKN (ma/			NU ₂ +NL), (mg/L)		Chlorida	e (ma/L)		E con (Cos	nts/100 mL1	
				OUTFALL 10			8				8		8	8		15 t					8					8					8			8				8	8	8	8
		8 8		OUTFALL 10		99	20 FAL		30	50	TA.		FA	FA	8	8		98	50		3		90	28		2	9	8 9		90	20 FAL		99	20 FAL		30	20	- I	TA.	78	TFAL
Peak		PAL PAL				74	our At		FAL	T I	% <u>9</u> ,		RAW 8	- F	ä	EC F	E	14	74.1	8	8		FÆ.	TA .	80	9	FAL	FAL		TW.	OUT FALL		TW.	on the		ZWEL	FALL	LNO WA	9	8	96.
DATE (MID) INFS RAI	ΔW	5 5	MPW 8	FEC FE	RAW	5	5 FEC	RAW	5	5	E FEC	FE	BOD. BOD	a BoDa	BOD ₂ c	OD, cec	D. RAW	5	5	88	FEC FE	RAW	5	5	8 6	FEC FE	5	50	RAW	5	5 FEC	RAW	5	5 FE	. RAW	5	5	FEC X10	6 X10^6	X10^6	FEC
		110.4 0.0		0 310.2 310.2		7.5	7.2				4.2	4.2	275 8	8		3	3 5.					0.30 2				0.91 0.91			41.0	72.5	2	7 < 0.01	0.21		.48 70.			82	2.1		8
		0.0 0.0	11.8 0.	0 294.7 294.7 0 284.7 284.7			7.4				4.8	4.8	356 378			3	3 8. 3 8.					0.30 3 0.30 4				3.28 3.28			70.5 106		5.				.72 86:			81			11
		0.0 0.0					7.4				3.3	3.3	378			3	3 8.					130 4				2.62 2.62 1.58 1.58			106		5.				.76 88. .68 80.			95			5
	77.1	0.0 0.0	12.1 0.	0 265.0 265.0			7.5				3.6	3.6	321			2	2 8.					0.30 4				1.91 1.91			65.3		1.				.41 78.			86			1
		12.7 0.0		0 279.3 279.3		7.6	7.5		112		3.8	3.8	333	90		2	2 8.					0.26 4				2.24 2.24			57.1	48.0	3.		0.05		0.7 89.				8 2.1		10
		376.9 0.0 17.7 0.0		0 334.6 334.6 0 344.5 344.5		7.4	7.4				3.2	3.2	154 7	7		2 <	-					1.24				0.61 0.61 1.66 1.66			26.7	27.4	1.		0.24		.42 46.				.1 0.8		16
		0.0 0.0		0 344.5 344.5		7.5	7.4		72		3.1	3.1	212 7	1		2 <	2 6.					0.09 2				1.66 1.66			44.4 47.4	29.7	2.		0.14		.55 76. .11 97.			70	0.5		6 21
		0.0 0.0		0 292.6 292.6			7.5				43	4.3	276			2 <						1.27 3				2.20 2.20			58.0		3.				1.2 94:			95			12
		0.0		0 276.4 276.4			7.5				3.0	3.0	331			3	3 7.	B1				0.26 3				2.14 2.14			58.3		3.	8			3.6 89.	.8		97			13
		0.0 0.0		0 278.3 278.3			7.5				2.6	2.6	293			3	3 8.					1.27 4				2.27 2.27			64.2		3.	7			3.1 90			93			10
		0.0 0.0		0 280.4 280.4 0 274.0 274.0			7.5				4.8	4.8	368			3	3 9.					0.30 4				2.27 2.27			65.8 64.7		3.	6			3.2 93.			92			10
		0.0 0.0		0 275.0 275.0			7.4				3.5	3.5	352			3	3 9.					132 4				1.13 1.13			62.7		2				4.2 92:			96			15
		137.6 0.0		0 294.7 294.7		7.5	7.3	625	77		3.7	3.7	281 9	6		2	2 6.	78 4.74			0.35	0.35 2				0.61 0.61			43.8	33.0	2	2	0.18		2.5 62:	2 64.0		92	1.3		11
		0.0		0 312.6 312.6			7.5				3.9	3.9	368			2	2 8.					1.29 3				0.94 0.94			53.6		2.				1.3 85.	-		80			5
		0.0 0.0		0 275.7 275.7 0 279.5 279.5		7.6	7.5		100		4.6 5.0	4.6	399	42		3	3 8.					0.32 3				1.65 1.65 1.29 1.29			62.7 57.5	56.3	3.		0.01		2.9 88. 3.6 82.			90	1.5		10
	37.8	0.0 0.0				7.0	7.5		100		6.5	6.5	247	~		4	4 6.					1.55 3				2.47 2.47			50.0	30.3	4		0.01		2.5 73:			80	1.3		13
		0.0	12.4 0.	0 288.7 288.7	7.5		7.5	348			6.6	6.6	367			4	4 8.	63			0.49	0.49 4	2			2.42 2.42			55.8		4.	.6			2.2 86:	2		81			31
		70.0 0.0		0 287.0 287.0		7.9	7.8				11.1	11.1		34		4	4 7.					1.99 3				2.10 2.10			48.4	39.4	4.				1.7 72.			89	1.7		42
		13.1 0.0		0 317.3 317.3 0 291.8 291.8		7.8	7.4				7.5 5.6	7.5	313 5	6	1 1	3	3 6. 4 8.					0.56 3 0.43 4				1.81 1.81 2.94 2.94			53.2 55.1	25.6	3.		0.22		1.3 84			78	0.5		7
		0.0 0.0		0 291.8 291.8 0 281.2 281.2			7.4				5.6	5.6	362			3	3 10					1.43 4				4.11 4.11			68.3		5.				0.6 81.			90			19
		35.4 0.0	10.1 0.	0 269.7 269.7	7.5	7.6	7.5		91		4.9	4.9	331 1	31		3	3 8.					1.34 3				2.70 2.70			58.2	50.1	4.		0.02		2.5 73.			87	2.3		11
				0 295.5 296.5			7.5				7.7	7.7	329			4	4 7.					0.56				1.21 1.21			55.2		3.		1		2.0 82	4		83	1.5		13
Tue-28 354.2 0.0 294 Wed-29 348.9 0.0 286		0.0 0.0		0 284.6 284.6 0 277.1 277.1			7.5	340			6.1	6.1	351			3	3 8.	78			0.52	1.52 4				3.43 3.43			59.2		5.				2.1 87.	.7		89			8
		0.0 0.0					7.5	400			5.7	5.7	316			3 4	4 10	10			0.58	0.58 4	4			6.12 5.12			68.8		6.	9 0.39			1.6 89.	4		94			12
Fri-31 340.7 0.0 286	86.8	0.0 0.0	11.0 0.	0 275.8 275.8			7.5	380			7.5	7.5	325			4	4 8.	99			0.54	0.54 4	9			5.50 5.50			61.8		7.	3			2.9 87.	8		95			6
Average 484.1 0.7 326 Minimum 330.5 0.0 276	26.3 76.3	25.5 0.0	11.4 0.	0 289.4 289.4 0 284.7 284.7	7.5	7.6	7.5	389	83		49	4.9	325 1	09		3.0	3.0 8.	13 5.68		-	0.39	3000	5 31.8			2.40 2.40			- 56.5	42.4		4.1 0.09	0.13	-	1.0 83.	1 71.2		88			
Minimum 330.5 0.0 276 Maximum 1.401.3 21.0 723		376.9 0.0	12.7 0.	0 264.7 264.7 0 344.5 344.5	7.3	7.4	7.5	210	43 112		2.6	11.1	154 5 443 1	90		4	4 10	3.72			0.09	1.09 1	.5 18.8 .8 49.9			0.61 6.33 6.33			108	72.5	1.	.1 < 0.01	0.01		4.2 97.	.3 44.8 2 109		98 3	8 2.3		42
GeoMean									-			-							-																			2	0 1.2	-	10.2
TOTAL 21 10,1	,117	789 0	355 (8,973 8,973					-												***																				

			nary Treatment (EPT) Usage	,	
Total Bypass (hr) E	PT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD
84	84	100%	191	191	100%

Report Co	mments
AEP Ref#	

OVIDING MORE EPCOR

Gold Bar Wastewater Treatment Plant Plant Performance Report June 2024

																																															Liges	nted Sludge: Tota		- ()			4
			Volume	of Flow (ML)																										Liq	uid Stream	Quality																					
	Influent			Effluent																																																	
		-	Non UV Disin	fected	UV Disin	fected		pHG	125°C	1	-			TSS (ma	L)				I	BOD _y (c)	OD ₃ (mg/L)	1	4	-			TP (mg/L)			1	1	NH3	I-N (ma/L)	1	-	un-ioni	ized NH3-N (ma/L			TKN (mad	1			NO ₂ +NO ₂ (mg/	L)			Chloride (ma/L)		1	E coli (Count	s/100 mL)	-
	Peak		FALL 30		8	UTFALL 10		FALL 30	FALL 20	OUTFALL 10			FALL 30	1 WEL 20	2	OUTFALL 10		RAW	OUTFALL 30	OUTFALL 20	Sada da	FEC	DATE OUTFA		TFALL 30	FALL 20	20		OUTFALL 10		FALL 30	FALL 20	8	OUTFALL 10		FFAL30	FFAL 20	FFAL 10		FALL 30	FALL 20	OUTFALL 10		WEL 30	OUTFALL 10		FAL 30	FALL 20	OUTFALL 10	RAW	OUTFALL 30	OUTFAL 20	OUTFALL 10
DATE	Flow (MLD) INFs RAW	w	5 5	MPW	FEI	FE	RAW	5	5	FEC	RAI	w	5	5	š	FEC	FE	BODs	BOD _s	BOD _s	BOD _s	cBOD _s	cBOD	RAV	, 8	5	8	FEC	FE	RAW	5	5	96	FEC	FE	5	5	5	RAW	5	5 F	EC	RAW	5	5 FB	C RAN	w 8	5	FEC	X10*6	X10^6	X10^6	FEC
Mon-03 Tue-04 Wed-05 Thu-08 FFi-07 Sat-08 Sun-09 Mon-10 Tue-11 Wed-12 Thu-13 FFi-14 Sat-15 Sun-16 Mon-17 Tue-18 Wed-19 Thu-20 FFi-21 Sat-22 Mon-24 Tue-25 Wed-25	364.2 0.0 283.1 369.6 0.0 283.1 369.6 0.0 283.1 369.6 0.0 283.1 369.5 0.0 0.0 0.0 0.0 369.5 0.0 0.0 0.	3337 (0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	11.5 12.4 12.9 11.8 11.6 11.4 12.1 12.3 11.6 12.4 12.4 12.4 12.5 12.3 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.6 12.1 12.3 11.8 11.6 12.1 11.8 11.6 11.7 11.8 11.7 11.8 11.6 11.7 11.8 11.6 11.7 11.8 11.6 11.6 11.7 11.8 11.6	0.00 283. 0.01 311. 0.02 318. 0.03 318. 0.03 304. 0.03 233. 0.00 2233. 0.00 226. 0.00 236. 0.00	2 272.2 2 272.2 5 2 311.2 9 318.9 0 394.0 9 278.9 9 278.9 38.8 263.8 8 263.8 8 263.8 0 298.0 0	7.3 7.5 7.6 7.6 7.6 7.6 7.7 7.5 7.5 7.7 7.6 7.6 7.6 7.7 7.6 7.6 7.7 7.6 7.6	7.4 7.8 7.8 7.8 7.5 7.8 7.8 7.8 7.7 7.7 7.7		7.8 7.8 7.5 7.4 7.5 7.8 7.5 7.6 7.6 7.6 7.6 7.5 7.6 7.5 7.5 7.6 7.5 7.5 7.6 7.5 7.5 7.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.6 7.5 7.5 7.5 7.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5		3111 3177 3172 3190 3172 3190 3172 3173 3173 3173 3173 3173 3184 3184 3187 3187 3187 3187 3187 3187 3187 3187	128 44.8 47.2 85.0 188 59.0 70.0 1907 69.3 124 82.0 73.3 98.7 90.7			7.8 8.0 8.8 3.6 8.0 8.3 8.0 8.3 4.4 9.2 8.4 8.4 4.5 3.3 3.9 4.7 3.9 4.7 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	7.8 80 88 36 80 83 80 83 84 44 45 84 84 45 39 47 47 43 84 44 45 33 47 44 45 46 44 45 46 44 45 46 46 46 46 46 46 46 46 46 46 46 46 46	294 305 206 179 341 284 287 330 240 220 228 312 230 345 331 330 345 331 330 345 331 346 335 346 335 336 335 336 337 346 337 346 337 346 337 346 347 347 347 347 347 347 347 347 347 347	102 53 101 159 167 167 167 167 167 167 167 167 167 167			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2	8 9 5 5 5 6 6 7 7 7 7 8 8 8 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 7 8 8 8 8 8 8 7 7 7 7 8 8 8 8 8 8 7 7 7 7 8 8 8 8 8 8 7 7 7 7 8 8 8 8 8 8 7 7 7 7 8 8 8 8 8 8 7 7 7 7 8 8 8 8 8 8 7 7 7 7 8 8 8 8 8 8 7 7 7 8 8 8 8 8 8 9 8 8 8 8	28	1.28 1.28 1.340 1.340 1.3.11 1.3.26 1.3.76 1.3.		0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	80 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	40.8 15.6 220.0 31.1 30.8 32.3 32.5 34.8 33.5 19.1 20.8 20.4 30.3 31.2 22.4 42.7 35.1 33.3 35.6 32.2 22.0 33.1 33.3 35.5 36.8 36.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37	20.11 29.94 40.1 48.1 48.1 48.1 43.1 43.1 43.1 43.1 43.1 43.1 43.1 43	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		5.08 5.08 5.08 5.08 6.022 1.34 4.22 3.68 3.51 3.39 4.51 4.84 1.23 2.27 2.28 3.20 3.33 4.38 2.28 3.20 2.24 2.24 2.24 2.29 1.84 2.20 1.13 1.07 1.87 1.41 2.91 2.91	5.06 5.05 3.55 0.22 1.94 4.22 3.68 3.51 3.39 4.51 4.84 1.23 2.72 4.44 2.56 2.26 3.33 4.31 3.32 2.72 2.72 4.44 2.56 2.26 3.33 4.51 2.72 4.44 2.56 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.7				50.0 61.3 31.8 33.3 46.5 52.0 48.1 50.5 51.9 42.5 51.9 44.8 41.8 44.8 44.8 47.6 54.5 52.8 53.5 54.9 54.9 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	27.4 32.0 45.5 57.8 25.3 24.8 37.3 50.5 58.4 44.3 40.0 58.4 42.4 24.8		6.3 6.1 4.3 5.3 6.0 6.6 2.7 4.5 6.3 4.4 4.1 5.1 5.7 6.5 6.1 5.3 4.4 3.9 4.4 3.9 4.0 3.6	< 0.01	0.24 0.54 0.03 0.20 0.16 0.03 0.02 0.02 0.02 0.03		133.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	84.0 69.0 69.0 69.0 88.2 88.2 88.2 88.3 88.4 86.7 94.9 96.7 94.1 120 120 120 120 120 120 120 12	50.9 50.9 50.9 50.9 50.9 50.9 50.9 50.8 50.7 772.9 47.4 54.8 56.8 56.8 56.8 56.8 56.8 56.8 56.8 56	93.8 86.3 86.1 93.7 97.0 106 106 107 92.7 72.8 101 105 105 101 101 101 101 101 101 101	2.8	02 03 13 1.7 1.7 12 1.1 1.0 1.3 2.9 0.6 2.3 2.0 3.8		11 19 10 7 9 31 177 13 16 16 16 15 7 20 7 16 4 18 13 19 15 10 10 10 10 10 10
Maximum	1,586.2 150.0 633.0	3.8 33	37.9 0.0	12.9	0.0 336	5 338.5	7.7	7.8	-	7.8		636	188		-	9.2	9.2	368	413			5	5	9	.28 9	0.80		0.	78 0.78	42.7	48.5	9		5.08	5.08				62.6	57.8		7.2	< 0.01	0.54		13.4	120	124	111	2.8	3.8		31
TOTAL	160 9,93	137 8	822 0	357	0 8,75	8 8,758		-	-						_				-	-	-									-		-	-									_			_				-				-12

Contact Laborators	of the information obour	t the auditu encur	anno nonnaistead w	Mr. the remains

			mary Treatment (EPT) Usage			
otal Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD	
99	99	100%	290	290	100%	
1.5						
ort Comments						
ort Comments						_
P Ref #						

RAW	Untreated Influent into the plant	FEC
INF	Untreated wastewater from collection system	OUTFALL
INFs	Influent, screened at the Headworks Diversion Structure	OUTFALL
PE	Primary Effluent from conventional primaries	OUTFALL
PE 30	Primary Effluent from conventional primaries discharged via Outfall 30	MPW
EPT	Enhanced Primary Treatment	ML
EPE	Enhanced Primary Effluent	MPN
EPEPS	Enhanced Primary Effluent Pump Station	NR
FE	Final Effluent from secondary treatment process (with biological nutrient removal). Pre-Ultraviolet	NS
	disinfection.	INS
	1 M An	AEP
	Marrie 24 Carrie	
	Marrieg For Mind	
	()	

Contribute post U/ desfection (FE-EPPFB)

U/desfected, deshaper de COFFEL: 02

Oddesfected, deshaper de COFFEL: 03

Oddesfected, deshaper de COFFEL: 03

Oddesfected, deshaper de COFFEL: 03

Contribute places (Fe-EFF) (FE-EFF)

Mergine (COFFE) (FE-EFF)

Mergine (COFFE)

Mergine

	Influent		Volume of Flow	(ML)																	Limite Orașe	- AP4																$\overline{}$
	Influent																				Liquid Strea	n Quality																
	- Pierre																																					
				Effluent																																		
			Non UV Disinfected	UV Disinfected		-1180500							900.6	:BOD _s (mg/L)				70 (AUTO 24 description			teater	d NH3-N (mg/L)		7001 (NO ₂ +NO ₃ (mg/L)			Chinal de Court I		F		
			Non UV Disimiscian	OV Distriction		DRINZS C				S (max.)			5009	.boby (mg/c)				IF INGL				ND3-N IIII	PL)		Un-sonize	io Nno-N (most)		I KN (IIIak)			NOJVNOJ (IIGEL)			Chieride Imarci		E 000	20000 IOO MLI	
				OUTFALL 10			8 1				8		R R		15 t				8					g 7					t 10			8 1			L 10	F 38	8 7	L 10
		\$	8 8			8 8	TFAL		8 8		TF.AL		TFAL TFAL	8	ಕ		8	8	17.44		98	- 30		TFAL	99	8 9		8 8	TFAL		8 8	TFAL		8 8	TF.AL	W	TFAL	TFA
Peak		1 2	TALL	8	-	TALL TALL	8		74	2	8	RAW	8 8	8	FEC FI	E	TAKE	38 38	8		FALL	TFALI	8	8	FAL	FAL		TAM TAM	8		TAL.	8		TALL TALL	8	2 3	8	8
DATE (MLD)	INFs RAW	, 5	5 5 MPV	y the FEC FE	RAW	5 5	FEC	RAW	5 5	š ,	FEC FE	BOD, B	IOD _s BOD _s	BOD _s	cBOD _s cBC	ID ₁ RAW	5	5 36	FEC	FE	RAW 5	5	FEC	FE	5	5 5	RAW	5 5	FEC	RAW	5 5	FEC	RAW	5 5	FEC	X10*6 X10*6	X10^6	FEC
Mon-01 477.2 Tue-02 366.1				0.0 277.9 277.9 0.0 278.8 278.8		7.9	7.5	300	88		4.8 4.8	275	146		2	2 7.1			0.39	0.39	36.7	.7		1.12 2.12			52.7	43.6	3.8		0.02	11.6	80.3	83.9	87.6	3.2	· [8
/ed-03 1,648.4				0.0 278.8 278.8 0.0 331.0 331.0		7.4	7.7 7.3	336 404	58		4.1 4.1 3.5 3.5	336 169	97		< 2 <				0.42		37.6 11.9 2			.04 2.04			51.9 21.9	27.5	3.7 2.6	< 0.01	0.28	12.2 6.57	84.3 37.6	59.3	87.8 73.6	1.6	B 0.2	11
-04 420.4	0.0 329.8	8 4		0.0 313.1 313.1		7.8	7.4	356	61		3.0 3.0	286	86		< 2 <				0.26		32.8 3			.92 1.92			43.2	44.2	3.3		0.03	9.93	84.2	105	83.5	1.3		
-05 364.7				0.0 299.5 299.5			7.7	380			3.9 3.9	311			2	2 7.5			0.33		34.5			.49 2.49			54.1		4.0			7.27	101		97.8			
-06 357.5 -07 360.2				0.0 283.6 283.6 0.0 280.4 280.4			7.6	380			34 34	278			2	2 6.0			0.27		35.6			.98 1.98 78 1.78			49.5 62.1		3.5			10.6	87.7		101			i
-08 366.4				0.0 292.9 292.9			7.7	3/1			52 52	330			3	3 8.1			0.33	0.33	38.4			.78 1.78			62.1		5.1			9.25	82.9 89.5		92.8			
09 356.1	0.0 301.7	7 0		0.0 289.3 289.3			7.6	354			5.6 5.6	292			3	3 8.6			0.50	0.50	33.0			1.57 3.57			54.9		5.6			7.37	90.7		95.6	2.2		
-10 358.4				0.0 288.6 288.6			7.6	368			3.9	325			3	3 8.5			0.41	0.41	34.3			.48 2.48			59.7		4.4	< 0.01		9.19	84.8		96.2			
-11 369.0 -12 358.2				0.0 287.9 287.9 0.0 284.6 284.6			7.6	424			4.8 4.8	285			2	2 9.2			0.39	0.39	34.1			.12 1.12			62.1		2.9			10.6	83.4		94.4	2.3		
1-12 358.2 11-13 325.7				0.0 284.6 284.6 0.0 279.9 279.9			7.6 7.6	396			46 46 48 48	326			2	2 8.7			0.40	0.40	36.5 35.6			1.94 0.94			60.1		2.7			11.2	92.6 87.8		90.7			
n-14 354.7	0.0 288.4	4 0		0.0 275.8 275.8			7.6	380			5.0 5.0	320			3	3 8.5			0.37	0.37	36.0			1.77 0.77			62.1		2.4			11.0	89.8		88.8			
n-15 344.2				0.0 278.5 278.5			7.6	456			4.9 4.9	337			3	3 9.2	6		0.35	0.35	33.6			1.98 0.98			63.7		2.7			9.9	83.7		89.7	4.3		
-16 348.3 1-17 354.1				0.0 277.0 277.0 0.0 273.6 273.6			7.6	440			4.3 4.3	283			3	3 9.1			0.34	0.34	33.0 31.6			188 0.88			64.5 55.7		2.5			10.2	86.7		94.3			
18 350.0				0.0 2/3.6 2/3.6			7.7	404			38 38	311			2	2 8.1			0.55		31.6			.47 1.47			49.7		2.9	< 0.01		9.82	90.9 87.9		94.0			
19 345.0		4 0	0.0 0.0 12.0	0.0 283.4 283.4			7.8	436			49 49	262			3	3 8.0			0.67		30.6		0.5	1.57 0.57			50.4		1.9			10.2	87.3		97.0			
-20 337.4				0.0 274.0 274.0			7.6	428			4.4 4.4	334			2	2 7.6	7		0.35		31.2		0.	1.44 0.44			49.4		1.6			10.6	80.9		94.8			
-21 377.5 -22 350.7				0.0 282.9 282.9 0.0 291.3 291.3			7.7	456 464			39 39	277			2	2 7.1			0.31		30.6			1.80 0.80 1.76 0.76			48.9 49.7		2.0			10.6	75.4 85.7		90.6			
1-23 345.7				0.0 291.3 291.3			7.7	484			42 42	316			< 2 <	2 7.5			0.34		31.1			1.76 0.76			49.7 53.0		2.4			9.68	87.2		94.9			i
d-24 328.0	0.0 284.5	5 0	0.0 0.0 12.5	8 0.0 272.2 272.2	7.6		7.8	448			4.5 4.5	219			2	2 7.6			0.32		31.8			1.64 0.64			54.2		2.3	0.11		10.5	88.6		92.1			ı
-25 488.5				0.0 291.8 291.8		7.5	7.5	532	112		4.4 4.4	312	318		3	3 7.8			0.34		30.3 5			1.46 0.46			55.2	71.1	2.2		0.04	9.67	87.1	85.8	92.1	2.2		
-26 728.1 1-27 632.4				8 0.0 316.4 316.4 8 0.0 309.9 309.9		7.4	7.4	428 380	81 47		5.5 5.5	299	130		3	3 6.6			0.39	0.39		.9		1.55 0.55			44.9	37.7 36.6	2.6		0.02	7.11	71.1	71.3 70.8	85.2	3.6		
n-28 357.9				0.0 309.9 309.9		/.5	7.4	380 468	**		39 39	321 367	113/		3	3 5.8			0.31	0.31	26.0 2			.28 1.28 42 1.42			40.3 58.1	30.0	2.9		0.01	7.96 9.45	68.6 81.3	70.0	77.9 84.3	3.4		. :
ion-29 344.8				0.0 279.0 279.0			7.5	460	1		5.8 5.8	277			2	2 8.1	9		0.33	0.33	32.1		1.2	.32 1.32			57.3		3.1			10.0	91.4		86.3			
ue-30 338.4	0.0 286.6	6 0	0.0 0.0 12.1	0.0 274.5 274.5	7.5		7.5	508	1		6.6	329			2	2 8.4	0		0.42	0.42	33.0		1:	.14 1.14			58.2		3.0	1		11.4	91.1		93.8			5
led-31 333.0 rerace 425.2	0.0 284.9	9 0	0.0 0.0 11.8	0.0 273.1 273.1	7.7	76 .	7.6	492 416	74		5.0 5.0	313	149		2.5	2 8.4	5 585		0.38	0.38	32.8	9	12	32 1.32			59.2	43.5	3.5	< 0.01	0.07	11.3	90.7	79.4	94.9		لللل	
nimum 325.7	0.0 283.9	9 0	0.0 0.0 11.2	0.0 271.1 271.1	7.2	7.4	7.3	300	47	-	30 30	169	86		< 2 <	2 4.5	3 3.61		0.26	0.26	11.9 2	.8	0	1.44 0.44			21.9	27.5	- 1.6	< 0.01	0.01	6.57	37.6	59.3	73.6	2.2 1.6	0.2	5
laximum 1,648.4	4 23.3 691.5	5 34	48.9 0.1 13.5	0.0 331.0 331.0	7.7	7.9	7.8	532	112		6.6 6.6	357	318		3	3 9.2	8 10.9		0.67	0.67	38.4 5	2	35	1.57 3.57			64.5	71.1	- 5.6	0.11	0.28	12.2	101	105	101	4.3 3.6	0.2	2
rotal	23 9,702	2 4	451 0 374	0 8,877 8,877	-																	-														28 25	0.2	10

Γ			Enhanced Prin	nary Treatment (EPT) Usage	,	
Ì	Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD
Γ	37	37	100%	327	327	100%

Report Co	mments
AEP Ref#	

ROVIDING MORE EPCOR

Gold Bar Wastewater Treatment Pl Plant Performance Report

																																Digested Sludge: To	tal Monthly Volum	ie (ML)		1.1
		Volume of Flow (I	MI)																Liqu	id Stream Quality																
	2														1																					
	engu		PM0																															/ /		
	Ī		Empent																															/ /		
		Non UV Disinfected	UV Disinfected	-	оНЯ25°С			TSS (mg/L)				BOD/cB0	DD _s (mg/L)		1		P (ma/L)		_		NH3-N (ma/L)			un-ionized NH3-N (moi	U .	TKI	N (ma/L)		NO ₂ +NO ₃ (mg	a/L)	1	Chloride (mg/L)	_	4	E. coli (Courts/1	40 mL)
					9				2		8	8		¥.				9				8						8		8			8	/I 7	8	8 8
			OUTFALL 10	_	, 4			_	¥		W.	W.L.		E .				Ħ				¥			_			W.		, H			#	/I 7	Ä	# #
		E E		3	1 2		E E	Ē	PTF		X	71.0	<u>6</u>		-	Ē Ē		75		E E		5	NT 30	NL 20	L 10	3	Ë	F 5	E	LL 2		E E	25	W	PT S	2 2
Peak Flow		45 45	§	V ₄ 5	1 5		45	APPS SEPS	Ť	N.	W C	-	w PEC	HE HE		47 47	SdB	Ť		4 5	5	Ť		3-15	1	¥45	45		445	445	-	4 45		A * 17	ŭ	/ -
DATE (MLD) Thu-01 330.7	0.0 278.7	, 8 8 MPW	B FEC FE	RAW Ö	Ö FEC	RAW 6 468	ō	5 B	FEC	FE BC	D, BOD,	BOD ₃	BOD ₃ cBO	D _s cBOD _s	RAW 8.91	8 8	10	FEC I	RAW	8 8	0	FEC I	164	8	ō	8AW 0	ō	FEC RAW	8	ō FEC	RAW	8 8	FEC	X10^6	X10^6	10*6 FEC
Fri-02 324.9			0.0 265.5 265.5 0.0 264.1 264.1	7.8	7. 7. 7.					4.8	958			2	8.91				0.36 33.3 0.35 29.3			1.64	1.64			59.7		3.6		11.9			98			11
Sat-03 317.1			0.0 260.5 260.5		7.				4.4	4.4	315		< 2	< 2	8.56				0.37 29.5				1.21			56.1		3.2		11.5			99			11
Sun-04 1,492.7			0.0 261.0 261.0		7.9		113		3.5		309 27			3	7.95	8.79			0.32 30.9	44.6			0.98			53.6 62.3		2.6	0.09	13.3		83.8	95		3.0	6
Mon-05 1,674.9 Tue-06 379.2			0.0 348.1 348.1 0.0 300.7 300.7		7.3		85		5.2		181 44	4		2	4.53 6.53	1.92			0.34 13.3 0.41 28.9	11.4		0.96	0.96			25.7 15.0 44.3		2.3	0.52	8.7 11.6		32.7	72		1.0	0.7 18
Wed-07 384.4			0.0 282.2 282.2			5 408			4.0		308			3	7.71				0.35 28.5				1.21			49.0		2.8 < 0.0	1	8.3			87			15
Thu-08 336.7			0.0 278.9 278.9		7.	6 376			4.1	4.1	302			2	7.70			0.32	0.32 29.7			1.12	1.12			45.6		2.7		10.1	92		93			1
Fri-09 338.6			0.0 276.8 276.8		7.				3.7		307			3	7.48				0.33 28.4				1.15			48.2		2.7		11.3			95			1
Sat-10 339.1 Sun-11 390.8			0.0 267.0 267.0 0.0 266.4 266.4		7. 7. 7.				4.5		314			3	9.40				0.38 29.5			0.30	0.98			55.9		2.5		11.6			95			1
Mon-12 344.0			0.0 276.7 276.7		7.				7.1		341			4	7.87				0.45 28.9				1.01			47.8		2.6		11.7			87			1
Tue-13 927.8			0.0 296.3 296.3	7.5	7.5	6 568	56		7.7	7.7	307 87	7		3	7.85	4.11		0.48	0.48 23.6	26.8		0.64	0.64			48.3 37.3		2.4	0.09	9.9	72	64.0	88		1.5	6
Wed-14 354.9 Thu-15 834.9			0.0 282.7 282.7 0.0 270.4 270.4		7.						253		3	3	10.7				0.38 36.1				0.77			70.5		2.5 < 0.0		11.6			86			4
Fri-16 1,024.8			0.0 270.4 270.4		7.7 7.		106				299 17 216 63			3	7.91 5.30	0.57 2.96			0.54 33.8	35.2 16.9			0.83			55.9 3.9 37.1 20.1		2.9	0.04	12.0		69.2 42.4	96		3.4	9
Sat-17 407.7			0.0 303.9 303.9		7.						302	-		3	7.15	2.20			0.33 32.5	10.3			1.12			50.5		2.5	0.04	10.5			81			2
Sun-18 353.1			0.0 276.2 276.2			5 366			4.7		220			3	7.89				0.30 35.5				1.14			53.6		2.6		11.3			82			1
Mon-19 488.9 Tue-20 375.3			0.0 280.7 280.7 0.0 283.0 283.0		7.7		64		4.6		328 18		-	2	7.49	7.69			0.31 32.8	38.0			1.18			52.8 50.4		2.7	0.04	10.4		84.9	87		1.9	1
Tue-20 375.3 Wed-21 340.8			0.0 283.0 283.0 0.0 276.6 276.6		7.9 7.		83		4.7		326 10	12		3	7.69 8.78	6.62		0.30	0.30 33.7 0.33 34.6	35.9		1.22	1.22			60.3 49.4		3.5	0.03	12.0		81.3	88	4.3	4.1	1
Thu-22 330.0	0.0 281.6		0.0 271.4 271.4		7.				4.1		337			2	8.83				0.32 36.6			1.75	1.75			65.8		3.9		13.8			92			
Fri-23 348.8			0.0 280.2 280.2		7.				3.1		318			2	8.11				0.30 35.2			1.01	1.01			63.1		2.9		13.8			93			9
Sat-24 658.2 Sun-25 923.2			0.0 296.8 296.8 0.0 329.3 329.3			6 380	96 69		4.6		365 20		1 3	2	7.19	6.29 3.71			0.31 32.0	36.2 21.8			0.71			55.6 52.8 41.9 27.7		2.8	0.05	11.2		79.0	88		3.9	4
Mon-26 355.7			0.0 329.3 329.3			4 349 5 408	eol		4.5		225 52	'		3	5.26 7.46	3.71			0.34 23.0	21.8		1.37	1.37			41.9 27.7 57.3	1 1	3.0	0.03	9.5 12.1		50.2	71		3.0	1
Tue-27 551.7						5 460	96		5.1		329 18	88		3	8.59	7.08		0.33	0.33 37.5	42.4		1.68	1.68			58.2 57.7	1 1	3.4	0.10	12.2		97.1	97	8.0	9.0	15
Wed-28 534.1			0.0 300.4 300.4		7.7		71			4.3	287 99	9	< 2	< 2	7.42	4.96			0.34 30.9	41.9		0.85	0.85			54.2 53.1		2.3 < 0.0	1 0.02	11.6	83	88.6	94		5.4	20
Thu-29 371.2 Fri-30 338.1			0.0 287.0 287.0 0.0 278.3 278.3		7.				5.0	5.0	292		1 1	3	7.59			0.33	0.33 37.3			0.59	0.59			61.2	1 1	2.3		11.8			91	. 1		- 11
Fn-30 338.1 Sat-31 349.6	0.0 290.1	0.0 0.0 11.8	0.0 278.3 278.3	7.7	7.	5 420 5 448			4.9	4.9	353			3	7.42			0.19	0.19 37.9 0.43 40.0			0.79	0.79			60.9		2.7		12.8	87 82		100			14
Average 533.0	4.9 316.3	3 19.4 0.0 12.1	0.0 284.9 284.9	7.6 7	7.6 7.	5 427	82		4.7	4.7	301 13	34		.7 2.7	7.75	4.97	-	0.36	0.38 31.3				1.14		-	53.8 39.1	-	2.8 < 0.0	0.09	11.4		70.3 -	89			
Minimum 317:1	0.0 273.4	4 0.0 0.0 10.2	0.0 260.5 260.5 0.0 348.1 348.1	7.4 7		3 326	55		3.1	3.1	181 44	4	< 2	< 2	4.53	0.57		0.19	0.19 13.3	11.4 -		0.59	0.59		-	25.7 3.9	=	2.2 < 0.0		8.3		32.7	71	43	1.0	0.7 4
GeoMean															10.7							1.99				623				13.6	93		100	5.9	2.8	0.7 11
TOTAL	151 9,806	8 602 0 374	0 8,831 8,831																																	

* Contact Laboratory for information about the quality assurance associated with the results

		Enhanced Prin	nary Treatment (EPT) Usage		
Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD
52	52	100%	379	379	100%

Report Cor	mments
AEP Ref#	

RAW	Untreated Influent into the plant
INF	Untreated wastewater from collection system
INFs	Influent, screened at the Headworks Diversion Structure
PE	Primary Effluent from conventional primaries
PE 30	Primary Effluent from conventional primaries discharged via Outfall
EPT	Enhanced Primary Treatment
EPE	Enhanced Primary Effluent
EPEPS	Enhanced Primary Effluent Pump Station

Month from conventional primaries for the Control 30 Memory from Control 30 Memory from Control 30 Memory from Control 30 Memory (Illian Form) from the Control 30 Memory (Illian Form) from the Control 30 Memory (Illian Form) from the Control 30 Memory from the Con

FEC Continued your AV distriction (FE SPFPS)

OUTFALL 30 U-destinates discharged as COTFALL 10 U-destinates discharged as COTFALL 30 U-destinates discharged as COTFALL 30 U-destinates (FE SPFP)

MPV More March Reposit (FE SPFP)

MPV Most Product Water (Efflort In-see wa Most Product Water (Efflort

ROVIDING MORE EPCOR

Gold Bar Wastewater Treatment PI Plant Performance Report

		Volume of Flow	(ML)																						iquid Strea	m Quality																			
76																																													
age			Effluent																																										
															200.0	:BOD ₁ (mg/L)																					NO ₂ +NO ₃								
	-	Non UV Disinfected	UV Disinfected		pH@3	25°C				TSS (mat					BODye	:BOD ₁ (mg/L)		,			TP (m	9(L)				NH:	3-N (ma/L)			un-ionizi	ed NH3-N (mo/L)		TKN	(ma/L)			NO ₂ +NO ₂	(mg/L)			Chloride (mg/L)			E. coli (Cos	unts/100 m
			OUTFALI				8					8		8	8		¥.	2					8					8							8				8			8		8	8
	99	28	OUTFALI	L 10	30	20	TA.		98	20		3		FALI	FAL	8	9	3		8	20		3		98	20		FALL		9	2 2		98	50	TAM.		99	20	FAL		30	TAN TAN	-	FAL	13/
	W.	14	g .		NET.	, WE	8		7	T VET	g.	8	RAW	v 5	- FO	8	FEC	FE		7	W.	g	8		JA.	178	9	P. L.		FAL	FAL		1	J.W.L	98		7	17	20		WEL WEL	- FO	N. W.	8	8
INFa naw	150	5	85 FEC	FE DAW	5	150	EEC		5	5	à		800	900	BOD	900	4800	-800		5	5	8	550 5		, 5	5	8	EEC	cc	5	150		5	150	EEC		5	50	550		150	EEC	V1016	V1000	V10
0.0 276.9	0.0	0.0 11.	8 0.0 265.1	265.1 7.7			7.5	464				3.5 3	1.5 2	190	5000	DOD	2	2	8.85				0.37	0.37	7.6			1.02	1.02			61.6			3.0	TOWN			13.3	84		94	XII U	X10 0	
0.0 294.9				271.2 7.5			7.5	552	95			4.2 4		344 2			3	3	8.96	7.00						2.4		1.46	1.46			59.9			3.3		0.09			0.3	83	91		4.8	
				290.9 7.5			7.4	348	44					126 9			3	3	8.13	5.06						2.6		1.08	1.08			62.4			3.1		0.03				75	89		2.1	
0.0 285.4				273.1 7.6 275.9 7.5			7.6 7.5	308 316				4.1 4	19 2				3	3	8.21 7.75	1					0.6			0.88	0.88			61.8			2.8	< 0.01			13.1	88		99			
0.0 288.1			3 0.0 277.8				7.6	297				4.8 4		187			4	4	8.06						9.2			0.93	0.93			61.2			2.8				13.4	87		101			
0.0 282.8				271.3 7.5			7.5	316				4.3 4	.3 2	152			3	3	8.26				0.36	0.36	8.5			1.11	1.11			61.4			3.1				12.9	83		100			
0.0 286.7				274.5 7.5			7.5	292				4.3 4		806			3	3	7.99						5.5			1.73	1.73			61.3			3.8				12.4	87		92			
0.0 288.4			.1 0.0 275.3 .7 0.0 268.5	275.3 7.6 268.5 7.5			7.5	388				4.4 4		194			3	3	7.46						9.1			1.65	1.65			57.0 56.1			3.2				12.0	108		88			
0.0 281.2				267.4 7.6			7.4	372				4.4 4 5.3 5		162			3	3	7.83						7.9			1.00	0.82			50.9			2.8	< 0.01			13.6 14.2	101		99	4.0		
0.0 345.7	30.9	0.0 12		302.4 7.5			7.4	336	55			5.4 5	14 2	136 10	9		3	3	6.89	6.79					2.6 4	1.4		0.79	0.79			46.6			2.7		0.03			87	88	93	3.6	2.3	
0.0 285.2				273.3 7.6			7.4	348				5.6 5	i.6 2	194			3	3	7.20				0.41	0.41	9.1			0.74	0.74			52.9			2.4				13.9	92		93			
0.0 308.1				270.8 7.6			7.5	320	95			6.0 6		901 16			3	3	7.50	7.59					7.7 4			2.00	2.00			57.7			3.7		0.03				94	99		4.4	
0.0 299.5				274.3 7.4			7.4	284 460	71			6.2 6 5.5 5	12 3	906 16 157 14	-		3	3	8.00	6.78					8.4 4 0.2 3	1.5		2.51 2.51	2.51			61.4 59.8			4.6		0.03				78	88		3.1	
0.0 283.0				270.6 7.6			7.5	304	/4			5.5	5 2	104	•		3	3	8.64	6.06					1.1	2.1		2.64	2.64			67.3			5.0		0.02			83	"	99		2.0	
0.0 283.5	0.0	0.0 12	.6 0.0 270.9	270.9 7.5			7.6	304				6.1 6	L1 2	181			4	4	8.37				0.43	0.43	1.9			3.27	3.27			64.5			6.1	< 0.01			10.6	84		99			
0.0 278.2				266.1 7.7			7.5	340				6.2	-	,,,			4	4	8.72						4.3			3.26	3.26			70.3			6.0				11.4	86		102			
0.0 287.9				275.7 7.5 261.4 7.5			7.5	312				6.8		800			4	4	8.48						2.1			2.64	2.64			68.6			5.2				12.1	77		100	'		
0.0 298.4				261.4 7.5 260.4 7.6			7.6 7.6	292 364	98			8.0 E		816 822 14			4	1	9.90	6.33					4.4 1.5 3			2.54 2.93	2.54			73.0 66.9			4.9 5.4		0.05			82 70	70	99		28	
0.0 284.1				277.1 7.5			7.6	396	54			8.4 6		102 9			3	3	8.42	3.89					0.0 3			2.03	2.03			62.0			4.3		0.02			81	76	86		2.0	
0.0 272.2				272.2 7.6			7.5	420				5.9 5	.9 2	199			4	4	9.55				0.42	0.42	1.9			1.95	1.95			69.3			4.1				12.1	82		95			
0.0 277.9			0 0.0 277.9				7.5	348				6.9		121			4	4	9.68	1					8.8			1.58	1.58			67.9			3.9	< 0.01			13.5	82		96			
0.0 418.9			0 0.0 333.2 .2 0.0 280.8	333.2 7.4 280.8 7.5			7.5 7.5	348	61			7.0 7		239 7			3	3	6.39 9.59	4.06					3.4 2 8.0	1.3		0.96	1.65			44.6 65.3			3.1		0.12		9.7	50	52	82 80		4.5	
0.0 276.2				263.7 7.5			7.5	276				5.8 5 4.9 4	19 2	269			3	3	9.50	1			0.45		8.0			2.33	2.33			67.5			4.6				13.3	87		90			
0.0 284.2	0.0	0.0 12	2 0.0 272.0	272.0 7.5			7.5	300				5.9 5	9 3	801			4	4	9.02	1			0.42	0.42	1.7			3.76	3.76			66.3			6.0				13.2	80		88			
0.0 287.2	0.0	0.0 12		274.5 7.6			7.5	300	70			6.2	2 2	194			4	4	9.33				0.47	0.47	9.3			5.53	5.53			67.5			7.5		0.05		11.3	85	70	91		1	
0.0 293.0	0.0	0.0 11.	.0 0.0 275.5 0 0.0 280.4	2/5.5 7.5 260.4 7.4	7.7		7.5	345 276	72 44			5.4 £	1.4 2	nss 1:	9	-	3.3	3.3	8.38 6.39	5.95 3.89			0.42	0.42	82 3 34 2	1.3		0.74	0.74			61.7 - 44.6	49.0 31.2		4.0	< 0.01	0.05	_	9.7	50	78 - 52 -	94	3.6	2.0	
1 0.0 418.9	81.7	0.0 13	3 0.0 333.2	333.2 7.7	7.8		7.6	552	98		_	7.0 7	.0 3	344 2	6		4	4	9.90	7.59			1.04	1.04	4.4 4	2.4		5.53	5.53			73.0	58.0		7.5	< 0.01	0.12	-	14.2	108	94	102	4.0	4.8	
			0 0 8265						-																																		3.8	3.0	-

Costact Laboratory	for information about th	o auditu aasusaaa	noncoloned with t	to rosulto

Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD	
32	32	100%	411	411	100%	
Report Comments						
AEP Ref#						
AEP Ret#						

RAW	Untreated Influent into the plant
INF	Untreated wastewater from collection system
INFa	Influent, screened at the Headworks Diversion Structure
PE	Primary Effluent from conventional primaries
PE 30	Primary Effluent from conventional primaries discharged via Outfall 30
EPT	Enhanced Primary Treatment
EPE	Enhanced Primary Effluent
EPEPS	Enhanced Primary Effluent Pump Station
FE	Final Effluent from secondary treatment process (with biological nutrient removal)

manusca discharged via Outlief 20

Mil.

Min.

M

Combined goas-I/V disinfection (FE-REPER)
UV-disinfected discharged sid outPRALL 10
Combined Bypass (RAIN+ FE-REPS)
Combined Bypass (RF-RINFS-REPS) + EPED) + EPED
Membrane Product Wissin (FRIners re-use water
Megistre (1,00,000 Line)
Moral Probabile Number
No Result
No Sample
Insufficier Sample

OVIDING MORE EPCOR

Gold Bar Wastewater Treatment F Plant Performance Report

																																						Digested Sludg	e: Total Monthly Vo	ume (ML)		71.1
		v	/olume of Flor	v (ML)																				Liquid Strea	m Quality																	
	Influent			Effluent																																						
		Non	UV Disinfected	UV Di	sinfected		pH@25°C		1		TSS (mot.)					BODyleBOD _s (r	ig/L)		+	1	TP (mg/L)				NH3-I	N (ma/L)			un-ionized NH3	N (molL)		TKN (ma/L)	1		NO ₂ +NO ₂ (mg/L	/L)		Chloride (m	ng/L)	_	E coli (Cou	nts/100 mL)
Peak Flow	INFs DAW	OUTFALL 30	OUTFALL 20	8898	OUTFALL 10	DAW	OUTFALL 30	OUTFALL 10	DAW	OUTFALL 30	OUTFALL 20	20 PEC	OUTFALL 10	RAW ROD-	S OUTFALL 30	OUTFALL 20	B FEC	FE 100	DAW.	OUTFAL 30	OUTFALL 20	FEC	OUTFALL 10	OUTFALL 30	OUTFALL 20	SABAS	OUTFALL 10	FF	OUT-FAL 30 OUT-FAL 20	OUT-FAL 10	DAW	OUTFALL 30 OUTFALL 20	OUTFALL 10	DAW	OUTFALL 30	OUTFALL 20	- DAW	OUTFALL 30	OUTFALL 20 OUTFALL 10	X MA	S OUTFALL 30	OUTFAL 30
100 100	0.0 272.0 0.0 0.0 273.3 0.0 0.0 274.5 0.0 0.0 274.5 0.0 0.0 275.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0 1 0.0 1 1 0.0	32	181.4 261.4 183.3 263.3 183.3 263.3 183.8 262.8 187.8 262.7 180.7 262.7 180.7 262.7 180.7 262.7 180.7 262.7 180.8 262.8 180.8 262.8 18	7.5 7.5 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	7.5	75 75 75 76 76 76 77 76 75 76 75 76 75 76 75 76 75 76 75 76 75 76 75 75 76 75 76 75 75 76 75 75 75 76 75 76 76 76 76 76 76 76 76 76 76 76 76 76	308 328 308 314 304 420 308 400 320 288 284 383 388 388 388 388 388 388 388 388 3	344 184		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.6 5.6 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.2 4.2 2.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	275 351 364 278 380 380 380 340 298 348 346 352 352 352 353 353 353 353 353 353 353	244 162		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8.99 9.12 8.79 8.15 7.955 8.40 8.70 8.73 8.86 7.29 8.61 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45	8.25 7.67		0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	42 0.42 0.42 0.39 0.39 0.30 0.37 0.37 0.37 0.37 0.37 0.37 0.37		79		3.85 3.34 2.65 1.36 1.179 2.46 1.277 2.48 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49	3.85 3.34 2.65 1.39 2.46 2.78 2.68 1.81 2.04 2.17 2.40 2.94 2.17 2.40 2.94 2.10 2.94 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10			66.7 6.31 6.31 6.31 6.31 6.35 6.35 6.35 6.36 6.36 6.36 6.36 6.36	66.3 53.7	63 57 44 33 39 42 41 33 37 43 40 40 61 61 62 62 62 62 63 64 65 65 67 70 68 68 68 68 68 68 68 68 68 68	< 0.01	< 0.01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 2.2 50 50 50 50 50 50 50 50 50 50 50 50 50	50 62	9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5	2.6 18.0	
Minimum 323.8 Maximum 593.2	0.0 268.8	0.0	0.0 1		55.5 255.5		7.5	7.4 7.7	268	164	=	- 2	3 26	275 446	162	=	< 2	< 2			=	0.5		31.5 3	2.1	=	0.84	0.84		=	55.3 71.2	53.7		< 0.01	< 0.01	= ;	1.2 68	80	8	3 3	8 26	-
GeoMean										-			- 5.0						2.54							-							7.0		0.00		92			. 3	9 6.9	
TOTAL	0 8,527	12	0 3	88 0 8	1,128 8,128	***	***		***		***																															

* Contact Laboratory for information about the quality assurance associated with the results

			nary Treatment (EPT) Usage			
Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD	
8	8	100%	419	419	100%	
eport Comments			•			
eport Comments						

RAW	Untreated Influent into the plant
INF	Untreated wastewater from collection system
INFs	Influent, screened at the Headworks Diversion Structure
PE	Primary Effluent from conventional primaries
PE 30	Primary Effluent from conventional primaries discharged via Outfall 30
EPT	Enhanced Primary Treatment
EPE	Enhanced Primary Effluent
EPEPS	Enhanced Primary Effluent Pump Station

OUTFAL
OUTFAL
OUTFAL
MPW
ML
MPN
NR
NR
NS
INS
AEP

Combined post-IV disinfection (FE-EPFER)

LLL 10 UV-disinfection discharged size OLIFFALL 10

LLL 20 Combined Bysiass (RPA - PE - EPFE)

LLL 30 Combined Bysiass (RPA - PES - PES) - EP

Marritana Poducit Visiant (Effuert re-saw w
Magaliter (1,000,000 Line)

Most Probabils Number

No Rasse

No Sample

Institute Cample

Institute Cample

na Manning M.Sc.; P.Eng.

Jeff Charrois PhD Senior Manager, Analytical Operations

OVIDING MORE EPCOR

Gold Bar Wastewater Treatment Plant Performance Report

																																<u> </u>			ioniny voidine (mc)		
			Volume of Flow	v (ML)																	Liquid Stream	Quality															
		2																																			
		ĝ																																	/ 7		
		-i		Effloent	-																														/ 7		
			Non UV Disinfected	UV Disinfected		рНЯ25°C			TSS (no(L)			BODy/cBO	D ₁ (mg/L)		ļ.,		TP (mo/L)				NH3-N	(mo/L)		un-ion	ized NH3-N (ma/L)		TKN (moš.)			NO ₂ +NO ₂ (mg/L)			Chloride (mo/L)		E. coli (Cou	4s/100 mL)
							_								į									_											1 . 7		
				OUTFALL 10			ž l				3	1 3	E E		9				ř					ž					1 4			ž			1 4 /	8	E E
			38			8 8	A P	8	- 20		Ě	TFA	4	Š .	5		98	2	T W		8.	- 20		Ě	8	20 02		8 8	154	2	8 8	4	/ 1	8 8	1 1	3 1	AT AT
	Peak		13.	8		JA 1	8	13/	FAL	2	8	RAW 8	8	B FEC	FE		F.	N 8	8		136	F.A.	2	8	¥ 1	*AL		13 13	8		1 1	8	/ I i	3 3	8	2 8	8 8
DATE	(MLD) INF:	Fs RAW	5 5 M	w B FEC FE	RAW	5 5	FEC	RAW 5	5	E FEC	FE	BOD, BOD,	BOD.	BOD, cBOD,	cBOD.	RAW	5	5 8	FEC	FE F	.w 5	5	8	FEC FE	5	5 5	RAW	5 5	FEC	RAW S	3 5	FEC	RAW	5 5	FEC	X10*6 X10*6	X10*6 FEC
Fri-01	376.4 0.0	.0 268.0	0.0 0.0 13	1.2 0.0 254.8 254.8	7.7		7.5	437		4.4	4.4	326		3	3	8.87			0.30	0.30	40.7			3.19 3.19)		52.6		4.4			11.6	83.1		86.4		7
Set-02	382.1 0.0		0.0 0.0 12	1.2 0.0 263.5 263.5	7.6		7.5	392		4.0		327		3	3	8.18			0.65		38.7			3.61 3.61			48.8		4.9		1	11.6	79.5		86.2		8
Sun-03		.0 291.6		1.3 0.0 279.3 279.3			7.4	400		3.5		274		2	2	8.81		1	0.42		39.6			3.52 3.52	2		54.9		4.7		1	11.4	90.0		83.4		6
Mon-04	356.5 0.0 347.8 0.0			8.4 0.0 271.5 271.5			7.5	408		4.2		309		3	3	8.51			0.29		38.8			2.84 2.84	4		59.8		4.6			10.6	83.5		79.1		12
Tue-05 Wed-06	347.8 0.0 343.1 0.0			1.5 0.0 272.3 272.3 1.9 0.0 265.3 265.3			7.4	376 676		3.5		307		2	2	8.35			0.29		38.2			2.10 2.10			51.2 67.3		3.3 4.0	< 0.01		10.4	104 88.1		95.2		4
Thu-07	334.9 0.0						7.4	436		3.5	2.5	376		3	3	10.1			0.26		38.4			2.66 2.66	. I		63.6		4.0	< 0.01		10.9	84.1		90.5		50
Fri-08	335.3 0.0			1.7 0.0 259.2 259.2			7.4	444		31	3.1	389		3	3	9.81			0.32		39.4			284 284	4		63.0		4.3			11.4	89.9		92.0		2
Sat-09	358.5 0.0	.0 271.3	0.0 0.0 13	1.8 0.0 257.5 257.5			7.5	392		2.6	2.6	331		3	3	9.27			0.33		40.4			3.08 3.08	3		59.5		4.8			11.1	80.5		92.5		9
Sun-10	327.4 0.0			1.3 0.0 262.7 262.7	7.7		7.6	400		4.4	4.4	316		3	3	10.1			0.33	0.33	39.2			3.41 3.41			64.9		5.2			12.2	79.8		86.4		6
Mon-11	360.9 0.0						7.5	364		3.6	3.8	354		4	4	10.3			0.32	0.32	44.0			3.67 3.67	7		71.3		5.0			12.6	83.9		82.7		8
Tue-12				1.4 0.0 261.8 261.8			7.5	288		4.4		310		4	4	9.29			0.33		41.0			2.88 2.88	3		63.4		4.2			12.1	86.2		81.6		4
Wed-13 Thu-14	342.9 0.0 317.0 0.0			t.6 0.0 260.0 260.0 t.7 0.0 258.5 258.5			7.5	360		3.1		324		3	3	8.53			0.27		39.4			2.46 2.46	·		56.1		3.5	< 0.01		12.0	86.3		88.9		6
Fri-15	402.9 0.0			t.7 0.0 258.5 258.5 t.8 0.0 270.2 270.2			7.4	304		4.5		341 319		4	4	8.92 8.31			0.31		40.6			2.30 2.30 2.54 2.54			57.0 57.8		3.7			12.1	83.6 94.2		89.4 91.0	3.2	4
Sat-16				1.7 0.0 256.9 256.9			7.5	316		43		299		3	3	9.00			0.30		42.1			2.96 2.96			57.7		4.6			12.2	78.8		98.9		6
Sun-17	373.3 0.0	.0 275.3	0.0 0.0 12	1.0 0.0 263.3 263.3			7.5	340		4.8	4.8	340		3	3	8.66			0.38		40.7			3.14 3.14	4		57.6		4.7			11.8	75.5		82.6		6
Mon-18	355.3 0.0	.0 280.3		.9 0.0 268.4 268.4	7.6		7.4	320		3.5	3.9	322		3	3	9.21			0.28	0.28	39.0			2.88 2.88	3		57.8		4.8			11.1	82.0		78.9		6
Tue-19	338.9 0.0	.0 273.7		1.6 0.0 262.1 262.1			7.4	324		3.4	3.4	364		2	2	9.07			0.30		40.2			3.04 3.04	4		63.2		4.6			11.8	90.7		85.5		7
Wed-20	343.8 0.0			1.9 0.0 261.2 261.2			7.4	408		4.5	4.3	332		2	2	9.27			0.31		39.8			2.97 2.97	7		64.9		4.7	< 0.01		10.5	82.9		88.6		8
Thu-21 Fri-22	324.4 0.0 334.7 0.0			1.9 0.0 257.0 257.0			7.5	336		3.7	3.7	302		2	2	9.14			0.31		40.7			2.43 2.43	3		64.3		4.1			10.6	84.9		85.3		7
Sat-23	334.7 0.0			t.1 0.0 261.0 261.0 t.3 0.0 260.7 260.7			7.5 7.5	300		2.5		329 326		< 2	< 2	8.42 8.50			0.32		38.0 40.1			1.68 1.68 1.83 1.83	3		60.7 62.6		3.3			9.4 7.8	102		91.7	2.9	4
Sun-24	386.7 0.0			1.0 0.0 263.0 263.0			7.5	324		3.5		326		< 2	3	8.50		1	0.28		32.0			277 277	,		62.6 58.5		4.5		1	7.8	94.6		103		6
Mon-25	350.0 0.0						7.5	276		4.6		275		3	3	7.92		1	0.27		37.6			2.13 2.15	3		57.6		3.8		1	7.0	101		95.2		12
Tue-26	340.8 0.0			1.6 0.0 263.4 263.4			7.6	320		3.5	3.5	363		3	3	8.28		1	0.26		35.7			1.20 1.20			57.7		3.3		1	6.8	107		108		7
Wed-27		.0 276.8		1.7 0.0 284.1 284.1			7.6	328		3.7	3.7	364		3	3	8.42		1	0.27	0.27	36.7			1.46 1.46	в		56.2		3.4	< 0.01	1	6.6	102		111		6
Thu-28		.0 278.0		1.0 0.0 265.0 265.0			7.6	380		3.0	3.0	352		3	3	8.31		1	0.28	0.28	38.9			1.64 1.64	4		57.3		3.4		1	6.9	99.7		110		6
Fri-29	344.7 0.0	.0 279.1	0.0 0.0 11	1.5 0.0 267.6 267.6 7 0.0 258.5 258.5			7.5	277		3.5	3.9	317		3	3	8.12			0.28	0.28	34.6			1.85 1.85	5		55.8		3.6		1	7.3	95.9		104	1 1	9
Sat-30 Average	372.1 0.0	.0 270.2 .0 275.6	0.0 0.0 11	1.7 U.0 258.5 258.5 1.5 0.0 263.0 263.0	7.6		7.6 7.5	363		3.8	3.8	334		3	3	8.12 8.87			0.27	0.27	39.1			2.67 2.61	2		63.5	-	4.2	< 0.01		10.3	89.6		101		
Minimum	317.0 0.0	.0 268.0	0.0 0.0 11	1.5 0.0 254.8 254.8	7.5		7.4	276		2.6	2.6	239	-	< 2	< 2	7.92			0.26	0.26	32.0	_		1.20 1.20			- 48.8		- 3.3	< 0.01		6.6	75.5		78.9	2.9	2
Maximum	688.8 0.0	.0 291.6	0.0 0.0 13	1.8 0.0 279.3 279.3	7.8		7.6	676		4.8	4.8	389	-	4	4	10.3			0.65	0.65	44.0	-		3.67 3.67	7		71.3		5.2	< 0.01		12.6	107		111	3.2	12
GeoMean	0	. 8.267	0 0 3	75 0 7,891 7,891	-																															3.0	6
ZUIAL	0	0,407	0 0 3	7,091 7,091																																	

Contact I abordony for information about the mulity assurance associated with the results

Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD	
0	0	100%	419	419	100%	
						4
Report Comments						
eport dominionts						
EP Ref#						

RAW Ureased Maker to no plant
For Ureased weathered from collection system
RFs I that it, consend at the National Destrois Organia
For Prince The Control of the National Destrois Organia
For Prince The Control of the National Destrois Organia
For Prince Theorem Control of the Control of Theorem Control of the Control of the Control of Theorem Cont

Contributed post-M-V distinations (FE-EPFER)
LLL 10 UV-distinations of LUTFALL 10
LLL 20 Contributed Bysics (RM-V = FE = EPFE)
LLL 30 Contributed Bysics (RM-V = FE = EPFE)
LLL 30 Contributed Bysics (RM-V = FE = EPFE)
LLL 30 Contributed Bysics (RM-V = FE = EPFE)
LLL 30 Contributed Bysics (RM-V = FE = EPFE)
LLL 30 Contributed Bysics (RM-V = EPFE = EPFE)
LLL 30 Contributed Bysics (RM-V = EPFE = EPFE)
LLL 30 Contributed Bysics (RM-V = EPFE = E

OVIDING MORE EPCOR

Gold Bar Wastewater Treatment Plant Performance Report

																																					Digested Sluc	adge: Total Monthi	y Volume (ML)		64.4	4
		Volume o	f Flow (ML)																				Liquid St	ream Qualit	у																	
ž																																										
anyu son			Efficient																																				/ /			
			Lillouix																																				/ /			
	H	Non UV Disinf	ected	UV Disinfected	 	рН@25°С		_		TSS (r	not)			B:	OD _y lcBOD _s (mg	L)				TP (mg/L)					NH3-N (mg/L)	1		un-ionized NH3-N (r	nat.)		TKN (ma/L)		1 1	NO ₂ +NO ₃ (m	ng/L)		Chloride	(ma/L)		E. coli (Cou	ints/100 mL)	-
							8					8		8 8	a	100	9			/ /		\$				8						8		/ /	8			/ /	8	8	a	8
		2 2		OUTFALL 10		9	SO IN		9	2		FALL		FALL S	, k	5			9	8		T V		2	2	FALL	۰				9 9	. K		9	20 FALL		9	2	FALL	FALL	FALL	FREE
Peak		77				Ä	ML.		WET.	ä		TO O	RAW	190	6 6	FEC	FE		ä	7	un .	5		Ä.	ii k	. 5	24	AL2	AL.		¥ ¥	P. P.		#	ALL:		¥F.	7	RAM	190	190	2
Flow INFs		5 5	6	FFC FF	T	5	5		5	5	6		000	000					5	5	- FE			5	5	550	3	150	5		150			5	5		5	5				-
DATE (MLD) RAW Sun-01 368.3 0.0 272.5	2.5	0.0 0.0	12.2 0.0	260.3 260.3	7.5	•	7	.5 RAN	120		W FEC 4.2	4.2	357	BUU _E BI	DD ₁ 80	3	cmOD ₃	8.08			0.26	0.26	37.9	_		3.13	3.13	-	-	67.0		4.4	KAW		8.	85 91.3			93.5 X10 ⁻¹	6 X10^6	X10-6	PEL
Mon-02 359.4 0.0 277.8	7.8	0.0 0.0	11.8 0.0	266.0 266.0	7.6		7	1.5	128		3.1	3.1	339			< 2	< 2	8.19		1	0.21	0.21	40.4			2.14	2.14			64.5		3.6			7.	88 110			93.4			
m-03 443.4 0.0 309.8 m1-04 382.4 0.0 278.3		5.2 0.0	11.7 0.0 12.1 0.0	292.9 292.9		7.6			152 210		3.4	3.4	360	178		3	3	7.73	4.61	1	0.21			35.3		1.66	1.66			53.1	47.5	3.3		0.05		29 255	450		154	1.5		
u-05 390.5 0.0 278.3		0.0 0.0	13.2 0.0						120		3.7 2.7	3.7	272			2	2	7.70 9.00			0.20		38.7 37.1			1.52	1.52			61.3 56.8		3.0				15 141 26 250			239 171	,		
6-08 391.5 0.0 301.5		0.0 0.0	13.4 0.0						196		2.8	2.8	280			2	2	8.55		1	0.22		34.1			1.70	1.70			58.0		3.1				73 334			294	- '		
1-07 497.4 0.0 303.5		9.0 0.0	13.4 0.0			7.5			144 144		3.0	3.0	371	204		2	2	8.66	6.20		0.24		32.3	30.3		1.89	1.89			54.8	47.0	3.4		0.04	7.	28 250			304	2.7		
+08 490.0 0.0 330.0 +09 370.2 0.0 287.5			13.2 0.0			7.4			152 168		3.0	3.0	316	239		2	2	7.59	5.97		0.18		30.5	36.6		1.70	1.70			49.6	53.5	3.1		0.02		31 333			311	1.6		
n-09 370.2 0.0 287.5 n-10 339.6 0.0 270.6		0.3 0.0	12.1 0.0	274.2 274.2				1.5 2 1.5 2			3.3	3.3	307			< 2	< 2	8.26 7.61			0.21		35.2 30.9			1.32	1.32			54.5 50.8		2.4				01 175 16 119			284	0.8		
id-11 329.7 0.0 270.1		0.0 0.0		258.7 258.7				1.5			2.4	2.4	362			2	2	8.09			0.19		38.1			1.32	1.32			48.8		2.4				01 133			145			
nu-12 367.3 0.0 272.0		0.0 0.0	12.3 0.0					1.5	192		2.7	2.7	298			2	2	8.94			0.22	0.22	39.6			1.46	1.46			53.1		2.7			8.	66 142			155			
6-13 322.5 0.0 271.3 8-14 358.6 0.0 275.0		0.0 0.0		258.1 258.1				1.5			3.1	3.1	294			2	2	9.91			0.24		41.4			3.68	3.68			55.8		5.1			12				149	,		
n-14 358.6 0.0 275.0 n-15 358.1 0.0 274.1		0.0 0.0	13.3 0.0 13.3 0.0					1.5 3			3.5 2.9	3.5	315			2	2	7.39 7.72			0.24		36.7 36.8			1.34	1.34			54.5 54.7		2.6			10	0.3 121			149			
n-16 349.3 0.0 279.4	9.4	0.0 0.0	12.6 0.0					1.6	116		3.0	3.0	305			2	2	8.08			0.21	0.21	39.5			1.44	1.44			53.8		2.6			9.	32 109			110			
1-17 327.9 0.0 276.0		0.0 0.0		262.5 262.5				1.5			3.4	3.4	323			2	2	9.74			0.28		41.2			1.85	1.85			60.4		3.4				1.0			117 2	£4		
6-18 328.2 0.0 272.3 p-19 321.4 0.0 273.1		0.0 0.0	12.9 0.0 12.9 0.0					1.4 3	171 172		3.6	3.6	363			2	2	10.00 9.67			0.24		41.2 42.5			2.09	2.09			62.1 60.6		3.3			11	1.8 105			114			
-20 318.1 0.0 278.5		0.0 0.0							172		33	3.3	365			3	3	9.67			0.29		42.5			1.89	1.89			58.8		3.4			11				109 2.	9		
s-21 347.7 0.0 276.0	6.0	0.0 0.0		262.8 262.8				1.5			3.9	3.9	336			3	3	9.32			0.25		42.4			1.69	1.69			64.0		3.1			11	.2 148			130			
-22 346.6 0.0 272.		0.0 0.0							124		3.7	3.7	322			3	3	9.57		1	0.26		44.6			2.00	2.00			64.0		3.5			10				143	1 '		
n-23 340.2 0.0 276.6 n-24 364.8 0.0 280.7			12.7 0.0 13.0 0.0					1.5 S	112		2.9 3.8	2.9	307 339			3	3	9.49		1	0.25		42.8 41.0			1.73	1.73			60.2 63.1		2.9			11	1.2 167			138			
ad-25 329.6 0.0 253.1				267.7 267.7				1.5			3.8	3.8	339			3	3	9.36		1	0.27		41.0			1.91	1.91			68.3		3.5				1.4 186			170	1 '		
nu-26 319.9 0.0 250.3		0.0 0.0	12.2 0.0	238.5 238.5	7.6			1.4			3.5	3.5	328			< 2	< 2	10.30		1	0.21	0.21	45.2			1.90	1.90			68.0		3.1				1.2 105			128			
ni-27 355.1 0.0 267.				254.7 254.7				1.4 3			2.9	2.9	343			3	3	9.59		1	0.27	0.27	38.4			2.09	2.09			61.5		3.4			13	1.1 138			113	- '		
as-28 341.9 0.0 266.3 un-29 335.2 0.0 265.3			12.2 0.0	254.5 254.5				1.5	186		3.5	3.5	297			2	2	10.40		1	0.22	0.22	43.8			2.08	2.08			59.7		3.3			11	1.9 115			132	1 '		5
Sun-29 335.2 0.0 265.3 Mon-30 338.5 0.0 271.4			12.9 0.0				7	1.6	112		33	3.3	351 258			3	3	9.39		1	0.27	0.27	41.3			1.99	1.94			10.0 58.5		3.3			12	1.0 99			100	- '		1
Tue-31 365.9 0.0 279.1	9.9	0.0 0.0	12.0 0.0	267.9 267.9			7	1.6	196		4.1	4.1	299			2	2	9.75			0.28	0.28	40.7			1.95	1.95			58.5		3.4			10	1.8 95			105		$\perp \perp \perp$	
verage 361.1 0.0 277.1 inimum 318.1 0.0 250.7	7.8	0.9 0.0	12.7 0.0) 264.2 264.2) 238.5 238.5	7.5	7.5	7	1.5 3	126 174		- 33	3.3	321	207	-	2.4	2.4	8.77	5.59	7	0.24	0.24	39.2	34.1		1.85	1.85		-	56.9	49.3	3.2	< 0.01	0.04	9.	86 151	401		157	24 08		Α.
Maximum 497.4 0.0 330.1	0.8	13.4 0.0	13.5 0.0	304.2 304.2	7.7	7.6	7	.6 3	196 210		- 42	4.2	371	239		3	3	10.40	6.20		0.29	0.29	45.2	38.6		3.68	3.68			67.0	53.5	5.1	< 0.01	0.05	15	1.1 334	450		311 2	29 27		1
GeoMean	-				-									-							-						_												2	.6 1.5		6.
TOTAL 0 8,61:	313	28 0	394 0	8,191 8,191																																						_

* Contact Laboratory for information about the quality assurance associated with the results

		Enhanced Prin	nary Treatment (EPT) Usage	1	
Total Bypass (hr)	EPT Usage (hr)	% Usage	Total Bypass YTD (hr)	EPT Usage YTD (hr)	% Usage YTD
20	20	100%	430	430	100%

Report Cor	mments
AEP Ref#	

RAW Ustwalder influent is to the plant
RF Ustwalder ultraceast from collection years
NF stiffset, conversed as the National Submissi Structure
NF stiffset, conversed as the National Structure
NF storm of the National Structure of National Structure
NF storm of National Structure of Nat

Princy Prince The consideration princes accurage on Listins 30 Entered Princy Ent

Combined goost-I/vi disinfection (FE-FEPFS) UV-disinfected discharged sid oUTFALL 10 Combined Byrass (RAMY + PE + EPFS) Combined Byrass (RFA IMPS + FE90 + EPF) Membrane Product Visite (Filhard re-use water Megalitre (1,00,000 Line) Moor Probable Number No Result No Sample Insufficient Sample

2024 Secondary Alum Usage (kg 100%)

_	January	February	March	April	May	June	July	August	September	October	November	December
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	171	0	0	0	0	0	56	0	0	0	0
7	0	0	0	0	0	0	0	86	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0	0	0	0	0	0
30	0		0	0	0	0	0	0	0	0	0	0
31	0		0		0		0	0		0		0
Total (kg)	0	171	0	0	0	0	1	142	0	0	0	0

2024 EPT Alum Usage (kg 100%)

	January	February	March	April	May	June	July	August	September	October	November	December
1	0	394	0	0	10130	0	881	0	0	0	0	0
2	0	0	0	0	0	0	0	0	1282	0	0	0
3	0	0	0	0	0	13414	16492	0	1002	6	0	3659
4	0	0	0	0	0	12416	1457	1668	0	0	0	0
5	0	0	0	2398	0	1343	0	7337	0	0	0	30
6	0	0	0	0	3033	0	0	0	0	0	0	0
7	0	0	0	0	14652	0	0	0	0	0	0	1694
8	0	0	0	0	1877	4168	0	0	0	0	0	6263
9	0	0	0	0	0	0	0	0	0	0	0	429
10	0	0	6950	0	0	0	0	0	0	0	0	0
11	0	3637	7196	0	0	8018	0	0	0	0	0	0
12	0	293	6113	0	0	9691	0	0	4174	0	0	0
13	0	0	3708	0	0	2377	0	5406	0	0	0	0
14	0	0	5006	0	0	1926	0	0	1737	0	0	0
15	0	0	7017	0	0	0	0	1959	1693	31	0	0
16	0	0	4791	0	11058	0	0	3564	396	0	0	0
17	0	0	4292	0	0	1995	0	0	0	0	0	0
18	0	0	517	0	0	0	0	0	0	0	0	0
19	0	0	0	0	3489	0	0	1625	0	0	0	0
20	0	0	0	0	0	0	0	460	0	4569	0	0
21	0	0	0	0	0	0	0	0	0	454	0	0
22	0	0	0	0	3839	0	0	0	3608	0	0	0
23	108	0	0	0	1193	1242	0	0	806	0	0	0
24	83	0	0	0	0	1388	0	2039	0	0	0	0
25	0	0	0	0	0	0	2264	3102	0	0	0	0
26	0	0	0	0	4123	0	2264	0	5295	0	0	0
27	0	0	0	0	646	6765	3187	753	0	0	0	0
28	0	0	0	0	0	0	0	4872	0	0	0	0
29	0	0	0	0	0	0	0	0	0	0	0	0
30	7148		0	11371	0	557	0	0	0	0	0	0
31	0		0		0		0	0		0		0
(kg)	7.338	4.324	45.591	13.769	54.041	65.300	26.545	32.785	19.993	5.060	0	12.075

Total (kg) 7,338 4,324 45,591 13,769 54,041 65,300 26,545 32,785 19,993 5,060 0 12,075

2024 EPT Polymer Usage (kg 100%)

_	January	February	March	April	May	June	July	August	September	October	November	December
1	0	0	0	0	171	0	3	0	0	0	0	0
2	0	0	0	0	0	0	0	0	4	0	0	0
3	0	0	0	0	0	47	60	0	4	0	0	10
4	0	0	0	0	0	42	5	4	0	0	0	0
5	0	0	0	5	0	4	0	32	0	0	0	0
6	0	0	0	0	5	0	0	0	0	0	0	0
7	0	0	0	0	61	0	0	0	0	0	0	6
8	0	0	0	0	6	12	0	0	0	0	0	45
9	0	0	0	0	0	0	0	0	0	0	0	3
10	0	0	15	0	0	0	0	0	0	0	0	0
11	0	10	17	0	0	20	0	0	0	0	0	0
12	0	1	17	0	0	33	0	0	12	0	0	0
13	0	0	11	0	0	8	0	15	0	0	0	0
14	0	0	15	0	0	5	0	0	6	0	0	0
15	0	0	20	0	0	0	0	6	6	0	0	0
16	0	0	15	0	24	0	0	18	1	0	0	0
17	0	0	13	0	0	6	0	0	0	0	0	0
18	0	0	1	0	0	0	0	0	0	0	0	0
19	0	0	0	0	10	0	0	5	0	0	0	0
20	0	0	0	0	0	0	0	2	0	12	0	0
21	0	0	0	0	0	0	0	0	0	1	0	0
22	0	0	0	0	11	0	0	0	8	0	0	0
23	0	0	0	0	4	4	0	0	2	0	0	0
24	0	0	0	0	0	4	0	7	0	0	0	0
25	0	0	0	0	0	0	5	18	0	0	0	0
26	0	0	0	0	12	0	5	0	27	0	0	0
27	0	0	0	0	1110	22	12	2	0	0	0	0
28	0	0	0	0	1124	0	0	18	0	0	0	0
29	0	0	0	0	0	0	0	0	0	0	0	0
30	12		0	30	0	2	0	0	0	0	0	0
31	0		0		0		0	0		0		0
otal (kg)	12	11	125	35	2,539	209	91	127	70	13	0	64

2024 DAF Polymer Usage (kg 100%)

	January	February	March	April	May	June	July	_	September	October	November	December
₁ [56	67	53	53	49	56	52	44	63	49	57	56
2	54	63	57	56	59	59	49	44	61	50	57	57
3	51	64	59	54	53	57	42	50	60	56	67	57
4	53	61	47	56	64	54	40	51	61	69	70	60
5	53	59	46	54	64	53	43	41	64	64	71	63
6	53	57	56	56	50	47	47	39	60	60	40	63
7	51	56	56	57	59	50	50	59	59	56	79	66
8	50	56	54	52	50	54	54	21	57	51	77	63
9	49	57	54	58	54	47	55	43	47	59	76	57
10	41	53	54	70	60	50	45	41	36	64	74	57
11	43	51	70	64	66	46	50	43	56	61	76	49
12	41	20	50	64	66	39	52	47	57	61	76	50
13	39	56	50	64	66	30	52	56	61	56	73	50
14	40	57	47	59	63	39	52	60	62	56	74	51
15	43	51	59	54	64	40	52	61	59	60	74	53
16	46	50	60	69	51	47	47	53	56	53	73	53
17	43	56	53	66	67	47	39	54	58	23	71	41
18	43	56	46	57	73	46	40	54	46	60	70	53
19	39	59	57	56	57	46	44	53	60	59	73	53
20	36	54	44	53	54	47	49	60	60	64	36	53
21	44	56	41	54	59	49	49	60	60	60	59	53
22	49	59	44	56	63	51	50	57	61	53	61	54
23	54	50	41	67	69	50	50	59	59	37	63	54
24	34	51	51	57	63	47	50	61	48	57	63	60
25	31	50	61	56	54	46	50	54	54	53	59	61
26	57	54	59	54	56	49	49	53	50	46	60	59
27	60	67	51	50	56	49	47	14	66	47	59	56
28	63	61	53	49	64	50	49	41	72	61	57	56
29	65	53	54	54	54	51	44	56	64	64	57	56
30	66		54	47	47	53	49	60	60	63	57	57
31	69		56		49		41	63		64		60
(kø)	1 516	1 605	1 640	1 717	1 821	1 447	1 479	1 555	1 736	1 736	1 959	1 731

Total (kg) 1,516 1,605 1,640 1,717 1,821 1,447 1,479 1,555 1,736 1,736 1,959 1,731

2024 Membrane Bleach Usage (L as delivered 16% sodium hypochlorite solution)

	January	February	March	April	May	June	July	August	September	October	November	December
1	393	796	413	656	557	734	1297	1074	695	409	499	439
2	458	834	430	470	275	851	1010	1004	977	577	517	689
3	604	1044	252	706	583	746	743	1056	743	586	550	477
4	608	573	481	611	692	913	501	986	744	822	523	627
5	570	210	431	497	652	894	900	997	728	698	533	523
6	472	444	305	556	447	724	1000	800	845	666	598	699
7	425	319	486	525	735	577	861	945	711	526	579	503
8	370	355	611	502	419	902	783	691	819	614	573	464
9	349	529	630	684	538	814	632	1087	615	593	589	668
10	306	509	577	789	734	770	744	968	733	657	519	420
11	268	373	854	597	621	689	884	1177	676	473	596	613
12	301	449	661	584	716	786	963	740	832	691	581	713
13	295	631	670	790	1016	683	849	1031	811	588	512	461
14	248	385	682	379	854	676	964	668	806	353	636	726
15	310	527	583	490	993	877	927	596	630	403	632	967
16	357	650	672	722	991	1083	1225	533	854	593	502	744
17	325	362	652	567	1114	746	1039	607	693	714	436	583
18	350	430	831	342	1292	757	1256	654	740	460	533	1016
19	485	575	630	697	997	710	1028	653	625	568	839	866
20	421	462	598	766	1017	905	1448	580	628	573	768	942
21	513	494	554	635	999	915	759	702	933	524	697	1066
22	494	621	364	479	341	1073	848	940	572	383	865	779
23	360	418	539	645	711	774	791	757	45	279	1058	620
24	315	478	1111	655	255	1090	878	925	0	561	1183	709
25	400	686	549	662	710	1033	804	1091	0	458	489	495
26	233	445	851	302	508	1876	789	796	419	545	751	527
27	384	499	438	474	760	957	653	866	402	543	508	582
28	399	266	429	476	724	1080	824	812	533	593	731	532
29	377	264	418	419	720	941	793	1047	412	566	510	559
30	346		367	576	568	632	870	803	394	512	651	581
31	449		452		855		873	788		421		569
Total (L)	12,186	14,626	17,519	17,252	22,394	26,208	27,933	26,375	18,613	16,951	18,957	20,159

2024 Ostara Magnesium Chloride Usage (L as delivered 30% magnesium chloride solution)

	January	February	March	April	May	June	July	August	September	October	November	December
1	0	0	0	0	0	0	6923	7064	6591	1303	0	0
2	0	0	0	0	0	0	6589	6839	6128	3267	0	0
3	0	0	0	0	0	0	5820	6764	6227	5211	0	0
4	0	0	0	0	0	2576	7156	6737	6351	5073	0	0
5	0	0	0	0	0	4556	5565	6527	5953	5664	0	0
6	0	0	0	0	0	5261	7154	6495	6511	5333	0	0
7	0	0	0	0	0	6095	7193	6542	6194	5732	0	0
8	0	0	0	0	0	6429	7108	5387	5871	6363	0	0
9	0	0	0	0	0	5705	6148	6586	5402	5724	0	0
10	0	0	0	0	0	5198	2706	6533	4612	6421	0	0
11	0	0	0	0	0	6320	0	6399	5407	6634	0	0
12	0	0	0	0	0	5920	3825	6436	2852	5718	0	0
13	0	0	0	0	0	6803	5697	5314	6650	6072	0	0
14	0	0	0	0	0	6902	5815	6560	6374	6215	0	0
15	0	0	0	0	0	7235	5931	6782	6384	6355	0	0
16	0	0	0	0	0	7105	6607	6171	6362	6076	0	0
17	0	0	0	0	0	7178	6587	6218	6182	5428	0	0
18	0	0	0	0	0	6974	6826	6257	6619	4553	0	0
19	0	0	0	0	0	7019	6610	1967	6976	3914	0	0
20	0	0	0	0	0	6774	6644	0	7008	4325	0	0
21	0	0	0	0	0	6916	6642	0	6961	997	0	0
22	0	0	0	0	0	6789	3310	1955	6889	0	0	0
23	0	0	0	0	0	6643	0	4237	6941	0	0	0
24	0	0	0	0	0	6440	3274	4164	7561	0	0	0
25	0	0	0	0	0	5915	4938	4835	7304	0	0	0
26	0	0	0	0	0	6886	5246	5217	5912	0	0	0
27	0	0	0	0	0	6285	5487	5573	5167	0	0	0
28	0	0	0	0	0	7209	5485	5977	6771	0	0	0
29	0	0	0	0	0	7046	5859	8086	6881	0	0	0
30	0		0	0	0	6675	5017	5749	4810	0	0	0
31	0		0		0		6343	6559		0		0
tal (L)	0	0	0	0	0	170,854	168,503	169,932	185,851	106,378	0	0

2024 Ostara Caustic Usage (kg 100%)

_	January	February	March	April	May	June	July	August	September	October	November	December
1	0	0	0	0	0	0	1191	885	832	141	0	0
2	0	0	0	0	0	0	1114	1013	950	122	0	0
3	0	0	0	0	0	0	1167	924	787	753	0	0
4	0	0	0	0	0	480	1255	859	884	750	0	0
5	0	0	0	0	0	868	1264	832	664	801	0	0
6	0	0	0	0	0	902	1117	809	859	697	0	0
7	0	0	0	0	0	1000	1240	928	806	845	0	0
8	0	0	0	0	0	1116	1268	858	739	879	0	0
9	0	0	0	0	0	1112	1211	700	527	881	0	0
10	0	0	0	0	0	684	296	894	515	979	0	0
11	0	0	0	0	0	1068	0	893	408	890	0	0
12	0	0	0	0	0	971	602	912	444	955	0	0
13	0	0	0	0	0	1119	978	988	972	901	0	0
14	0	0	0	0	0	1004	1101	992	983	953	0	0
15	0	0	0	0	0	1356	1016	1010	1018	909	0	0
16	0	0	0	0	0	1323	1044	917	1000	748	0	0
17	0	0	0	0	0	1249	1065	921	1054	825	0	0
18	0	0	0	0	0	1096	1151	936	1026	683	0	0
19	0	0	0	0	0	1125	1095	385	1116	437	0	0
20	0	0	0	0	0	1227	990	0	1119	581	0	0
21	0	0	0	0	0	1242	1081	0	1154	146	0	0
22	0	0	0	0	0	1259	529	272	1076	0	0	0
23	0	0	0	0	0	1196	0	432	1128	0	0	0
24	0	0	0	0	0	1042	338	549	1105	0	0	0
25	0	0	0	0	0	809	488	656	1011	0	0	0
26	0	0	0	0	0	935	589	729	858	0	0	0
27	0	0	0	0	0	1005	675	764	777	0	0	0
28	0	0	0	0	0	1109	689	877	870	0	0	0
29	0	0	0	0	0	1211	735	906	837	0	0	0
30	0		0	0	0	1110	868	919	741	0	0	0
31	0		0		0		809	898		0		0
Total (kg)	0	0	0	0	0	28,618	26,967	23,657	26,260	14,876	0	0

Gold Bar Wastewater Treatment Plant 10977 50 Street Edmonton AB T6A 2E9 Canada

epcor.com

Approval 639-03-07 Gold Bar Waste Water Treatment Plant Operations Monthly Summary

2024

SENIOR MANAGER, OPERATIONS MANAGER, OPERATIONS	TRINA MANNING ALLAN GORDON (LEVEL II)
LEVEL IV OPERATORS	 JANAKA LEKAMWASAM MIKE NUNES JODY PENNER COLE BAKER ANDREW NIEUWENHUIS ISMAIL SANDOUGA ARMEN OMERAGIC ADAM KELLY EMMA REES JERMINE PAGLICAUAN YUSUF JAMA RYAN VOGELGESANG DEREK HOLDEN

January

- 1 secondary bypass Jan 30
- 4 Voltus shutdowns Jan 12, 13, 14, & 18
- Opt out of Voltus from Jan 15 to 25 due to performance concerns
- 18 dead ducks found in secondaries/UV for Jan
- Ferm 1 TPS pump 28430 seal leaking Jan 1
- Supernatant off due to low flow Jan 1
- Sec 6, Cell 3 broken shear pin Jan 1
- PE sampler not drawing samples Jan 3
- EPT 11/12 drained and locked out Jan 3
- West Scrubber recirc pump repaired Jan 5
- Instrument air compressor GTC 15204 failed Jan 5
- Outfall 30 low temp alarm heater set up Jan 7
- Sec 1, Cell 4 broken shear pin Jan 7
- Prim 10 west drive broken shear pin Jan 7

- Grit Tank 7 incline auger has a leak Jan 8
- UV Channel 3 drain valve leaking changed to lag 3 Jan 10
- GRF locked out Jan 10
- Ferm 4 TPS pump 28645 oil hose fell off Jan 10
- Outfall 10 flow meter replaced Jan 10
- Sec 3, Cell 2 broken shear pin Jan 11
- PE sampler fridge failed Jan 11
- Labatts called to report a spill of liquid with a pH of 5.88 total volume 10.42 cubic meters – Jan 11
- East Scrubber level transmitter failed Jan 12
- Membrane center feed pump leaking oil (lag 2) Jan 12
- UV Channel 4 unhealthy bank alarm Channel 3 now lag 2 Jan 13
- North and south poly mixing systems issues north no water and south is plugged
 Jan 13
- West Scrubber filters plugged bypassed Jan 14
- InDense sprayers frozen Jan 15
- Lag has broken hot water line Jan 16
- South poly system mixing pot broken Jan 17
- Membrane day bleach tank leaking at bottom Jan 18
- Sec 2, Cell 5 broken flight Jan 21
- Scum tank 5 level indicator issues Jan 20
- Ferm 3 scum tank level transmitter failure Jan 23
- Odour complaint Jan 24
- Sec 2, Cell 1 broken shear pin Jan 25
- Prim 8 east pass broken shear pin Jan 25
- Product water pump 45357 check valve passing (lead) Jan 27
- Dig 7 influent flow meter blown fuse Jan 28
- UV main sampler stopped sampling Jan 28
- Ferm 1/2 scum tank level indicator 3650 bad PV Jan 29
- EPT poly in auto for bypass in cascade the program shut down Jan 30
- DAF 1 broken shear pin Jan 30
- Membrane sampler not drawing samples Jan 31
- Membrane plant tripping off due to low contact tank levels Jan 31
- Recovery cleans started for all membrane tanks Jan 31
- Quills cleaned at membrane plant Jan 31

February

- 1 secondary bypass Feb 11-12
- 2 Voltus shutdowns Feb 2 and 29
- 5 dead ducks found in secondaries/UV for Feb
- Membrane recovery cleans started again due to low permeability Feb 1
- Product water pump 45348 check valve failed Feb 1
- Grit Tank 4 back to Ops and filling Feb 2
- DAF 6 poly pump failed Feb
- Prim 8 cross collector broken shear pin Feb 4
- Grit Tank 4 back in full service Feb 5
- Membrane west sample pump failed Feb 5
- Labatts called about caustic spill pH of 11.5 57.67 cubic meters Feb 6

- Grit Tank 7 O/S and dewatered for inspection Feb 7
- Sec 4, Cell 4 broken shear pin Feb 7
- Filling EPT 11/12 with FE Feb 8
- EPT 10 west drive broken shear pin Feb 11
- EPT 12 cross collector broken shear pin Feb 11
- UV Channel 4 relamp started Feb 12
- EPT 11/12 in full service Feb 12
- EPT 9/10 O/S and thinning Feb 12
- UV outage 11:00 pm to 4:30 a.m. for breaker replacement Feb 14-15
- EPT 11 broken shear pin Feb 15
- Sec 11, Cell 2 scum actuator failed Feb 16
- EPT 9/10 draining for cleaning/inspection Feb 17
- EPT 12 broken shear pin Feb 17
- Prim 6 scum tank discharge line plugged Feb 18
- Dig 2 recirculation pump keeps tripping Feb 17 Overload replaced Feb 21
- Grit Tank 6 incline auger has a hole on the underside of trough Feb 21
- Ferm bleach pump 65314 tube failure Feb 21
- Broken shear pin Prim 8 Feb 21
- EPCOR Compliance called to report a 25 L gasoline spill Feb 23
- Sec 2, Cell 5 scum trough failed Feb 24
- Broken FE line by Sec 3 Feb 26
- Prim 8 scum line plugged Feb 26
- Bio 8, Cell 3 air flow meter not reading Feb 26
- South poly screw feeder will not run Feb 27
- Boiler 7 stack cover falling off Feb 27
- UV Channel 1 bulb replacement started Feb 27
- Membrane back pulse valve leaking air shut down plant a few times Feb 28
- UV Channel 1 bulb replacement complete ready for service Feb 29
- Membrane plant shutdown for 2 hours to replace back pulse valve actuator Feb 29
- Glycol air relief valve leaking from roof of west scrubber onto road way isolated and cleaned up – Feb 29
- Small glycol leak in gas room 1 from air relief valve by K102 Feb 29

March

- 2 Voltus shutdowns Mar 9 & 10
- 8 secondary bypass events Mar 10-11, 11-12,12-13, 13-14, 14-15, 15-16, 16-17, & 17-18
- 2 dead ducks
- Membrane transfer bleach line A repaired ready to use Mar 4
- Prim scum tanks 6/8 back in service after discharge lined cleaned Mar 5
- Grit Tank 7 back in service after inspection/repair Mar 6
- Prim 6 broken shear pin cross collector Mar 7
- EPT 12 cross collector broken shear pin Mar 8
- Testing Bio 4 in spring mode Mar 8
- Broken shear pin Prim 8 cross collector Mar 8
- Blower 6 tripped on surge alarm due to element alarm Mar 10
- Grit Tank 5 pre-screen scraper bars misaligned due to rope coming in Mar 11

- Grit Tank 5 isolated/drained for pre-screen repair Mar 11
- Blower 6 available again after temp element reset by E/I Mar 11
- Ferm 1 TPS pump 28432 broken shear pin Mar 12
- Grit Tank 5 back in service after pre-screen repair Mar 13
- Prim 8 cross collector broken shear pin Mar 15
- EPT 12 east sludge collector drive broken shear pin Mar 16
- Sec 4, Cell 3 collector chain fell off of sprocket dewatering for repair Mar 18
- Sec 6 waste pump replacement Mar 19
- Prim 8 scum tank plugged Mar 21
- Ferm 1 TPS pump 28430 pillow block bearing cracked O/S Mar 21
- Sec 4 filling after repair Mar 22
- Sec 4 back in full service Mar 24
- Sec 2 clarifier blanket lifting Mar 23 & 24
- Scum tank Prim 6/8 cleaning started Mar 25
- Boiler House 2 south expansion tank isolated for bladder replacement Mar 25
- Chemscan 1174 nitrate readings O/S until software upgrade happens Mar 26
- EPT 12 cross collector broken shear pin Mar 26
- West Scrubber offline (4 hrs) for bleach pump vent repair Mar 27
- EPT 12 broken shear pin Mar 29

April

- 2 Secondary Bypass Events Apr 5 & 30
- Voltus shutdown Apr 22
- Grit Tank 6 O/S for cleaning/inspection Apr 1
- Grit Tank 3 dewatered for Screen 3 chain replacement Apr 2
- Grit Tank/Screen 2 back in service after screen chain replacement Apr 3
- TWAS pump 1 O/S for replacement Apr 4
- EPT 12 broken shear pin Apr 4
- Sec 2 clarifier lifting InDense tank increased RAS Apr 8
- Sec 2, Cell 2 broken shear pin Apr 8
- EPT poly pump 66459 tube replaced Apr 8
- West biogas line to flare purged and isolated for projects Apr 11
- EPT 9/10 full and back in service Apr 12
- Dewatered Prim 7/8 for cleaning/inspection Apr 13
- Prim 6 cross collector broken shear pin Apr 13
- Blown rupture disc on north heat exchanger in the blend tank area switched to south – Apr 14
- Ferm 1 TPS pump 28430 broken positioner Apr 14
- Prim 5 west pass broken shear pin Apr 15
- Ferm Scrubber north bleach pump tube failure Apr 16
- Sec 11 broken shear pin Apr 16
- EPT 12 cross collector broken shear pin Apr 18
- Grit Tank 5 pre-screen scraper assembly broke Apr 19
- EPT 9 west collector drive broken shear pin Apr 21
- Blower 1 & 4 tripped Apr 22
- Grit Tank 4 dewatered 4 feet to inspect incline auger back in service same day
 Apr 22
- Clean of the Primary Scum system completed back into service Apr 23

- Blower 1 & 4 DeltaV card replaced Blowers 1 & 4 available Apr 23
- Ferm Scrubber bleach pump 65314 roller failure Apr 23
- Bio 5 air line leak bio isolated to repair air line Apr 23 Secondary 5 back in service Apr 29
- Scrubber 5 commissioning started EPT scrubber off line Apr 24
- EPT 12 cross collector broken shear pin Apr 24
- Grit Tank 5 dewatered for pre-screen repair Apr 29
- Scrubber 5 commissioning complete Apr 30
- Scrubber 6 commissioning started Apr 30
- Prim 6 cross collector drive shaft not moving Apr 30
- 2024 Operations Plan submitted to AEPA Apr 30

May

- Biosolid truck spill on 88 Ave and Highway 15 May 4
- Voltus outage May 2, 23, 25, 29 & 30
- 6 Sec Bypass Events May 1, 6-8, 16, 19, 22-23 & 26-27
- Dead ducks 1
- EPT poly system plugged May 1
- Prim 8 west pass broken shear pin May 4
- Prim 7/8 back in service May 4
- Prim 5/6 O/S for inspection May 5
- EPT 11 west pass broken shear pin May 5
- Ferm Scrubber bleach pump 65314 failed on overcurrent May 7
- Ferm Scrubber bleach pump 65313 tube failure May 7
- Prim 7 collector drive broken chain May 7
- Prim 8 west pass broken shear pin May 7
- Low permeability on all membrane trains hypo cleans started
- EPT 11 broken shear pin May 12
- Prim 8 broken shear pin May 12
- North blend tank heat exchanger rupture disc failed May 13
- EPT 9 broken shear pin May 14
- Sec 9 cross collector broken shear pin May 14
- Sec 2, Cell 3 broken shear pin May 16
- Sec 6 cross collector broken shear pin May 18
- Prim 5/6 back in service May 18
- Draining Prim 8 for repair May 20
- Sec 10, Cell 5 broken shear pin May 20
- Prim 7/8 scum tanks cleaned by Canessco May 21
- Sec 8, Cell 5 broken shear pin May 21
- Citric cleans started in membrane May 22
- Ferm Scrubber bleach pump 65314 tube failure May 25
- Prim 8 cross collector broken shear pin May 25
- Sec 1, Cell 4 broken shear pin May 25
- Prim 4 broken shear pin May 25
- Ferm Scrubber bleach pump 65313 failed May 27
- Sec 9 cross collector broken shear pin May 28
- Sec 5 equalization valve replaced May 29
- RAS 1 pin hole leaks temporary repair complete May 29

- Filling prim 8 with F.E. May 29
- Prim 5 broken shear pin long pass May 29
- Labatts reported spill of 14 cubic meters of liquid with a pH of 5.8 May 29
- Prim 8 broken shear pin May 29
- Phosphate spike the evening of May 30
- Prim 5, Cell 1/2 & Prim 8, Cell 3/4 broken shear pins May 31

June

- 9 Secondary Bypass Events June 3-5, 8, 11-12, 12-13, 14, 17, 23-24, 27th & June 30th July 1st.
- Voltus outage June 12, 18, & 23
- EPT roof leaking June 3
- Bio 1 RAS discharge line leaking/ temp repair complete June 5
- Hot water cleaning scum tanks 5 thru 8 before boiler house 1 shutdown June 10
- Ostara feed pump tripped June 9 & 12
- Bio 4 back in service June 12
- Solids shutdown to prepare for power outage June 11
- Prim 5 broken shear pin cross collector June 12
- EPT 11 broken shear pin June 12
- Sec 8, Cell 2 broken shear pin June 12
- Ferm Scrubber caustic pump 65322 tube leaking June 13
- Ferm 4 level transmitter failed June 13
- Membrane chlorine dosing pump 26627 union leaking O/S June 13
- Planned power outage complete June 13
- Prim 5 scum tank level indicator faulty June 14
- Ferm Scrubber bleach pump 65313 tube failure June 13
- Membrane conductivity meter faulty June 13
- Broken shear pin Sec 10, Cell 3 June 15
- Starting 2 hypo & 2 citric cleans for Train 3 to see how permeability responds June 15
- Prim 7 cross collector broken shear pin June 16
- Prim 5 broken shear pin June 16
- Bio/Sec 6 O/S for inspection & air line repair June 17
- Boiler house 1 O/S for summer June 17
- East & Fermenter scrubber off line due to planned power outage (8 hrs) June 19th.
- EPT 12 broken shear pin blanket 0.61m June 20
- Prim 5 broken shear pin June 20
- New PE sampler not counting on DeltaV June 21
- WAS 11 VFD failure temp VFD setup June 22
- Sec 9 cross collector broken shear pin blanket 4.5 ft June 22
- Sec 3 broken shear pin June 25
- Membrane train 3 2 hypo and 1 citric cleans complete June 25
- Prim 5 west pass broken shaer pin 0.15 M blanket June 28
- Outfall 20 sump alarming periodically June 29

- Sec 8 cell 5 broken shaer pin June 30
- Bio 6 draining complete for inspection June 30

July

- Bypass Events July 1, 3-4, 25, 26, 27
- Voltus outage July 4, 8, 9
- EPT 12 east collector broken shear pin July 1
- Heating pump 7 (Boiler House 1) leaking seal July 2
- EPT 11 cross collector broken shear pin July 3
- Prim 6 cross collector broken shear pin July 4
- UV design dose changed from 21 to 23 to troubleshoot ecoli values July 5th.
- Prim 7 scum collector tripped on phase loss July 6th.
- Sec 1 RAS discharge line temp repair is leaking a lot July 6th.
- Sec 5 RAS pump has a pin hole leak on volute July 7th.
- Grit tank 4 pre-screen incline auger guide wheel came off of bearing July 7th.
- Scrubber 5 bleach pump 74385 has a leak at the check valve July 8^{th.}
- Started draining bio 1 to replace RAS 1 discharge spool piece July 8th.
- EPCOR drainage reported a hydraulic spill of 2 to 3 Litres July 9th.
- East liquid ring compressor has a broken steel plate O/S July 9th.
- RAS 1 dischrage piping repair complete July 9th.
- Prim 5 west cell broken shear pin July 9th.
- Sec/Bio 1 back in service July 10th.
- Backup RAW sampler faulted a few times, over sampling at times July 11th.
- EPT 12 broken shear pin 2 ft blanket July 11th.
- Broken shear pin sec 10 cell 3 blanket 5 ft July 11th.
- Ferm caustic pump 65322 pin hole leak on suction July 11th.
- EPT 11 cross collector broken shear pin July 11th.
- Raw backup sampler not advancing to next bottle July 12th.
- Sec 9 cell 2 broken shear pin blanket 4 ft July 16th.
- Scrubber 5/6 now running together west scrubber now off line July 16th.
- Sec 6 back in full service July 19th.
- DAF 2 recycle pump seal leaking July 20th
- Sec 7 clarifier O/S and draining for inspection July 22nd.
- Fire alarm in Ops Center: False alarm- smoke detector issue July 23
- EPT 11 cross collector shear pin break July 24
- Roof leak in lab July 26
- Sec 8 broken shear pin July 28
- EPT 9 collector shear pin break blanket 1 ft- July 26
- EPT 9 drive shear pin break July 31

August

- 8 Bypass Events Aug 4th-5th, 13th, 15th-16th, 19th, 24th, 24th-25th, 27th, 28th,
- EPT 11 shear pin break Aug 1
- Primary 5 broken shear pin (2x) Aug 2
- Secondary 7 back into service August 2
- Secondary 1 out for planned RAS pump and piping replacement Aug 3
- Bio 10 Cell 5 air valve stuck open Aug 3
- Sec 6 croll shear pin break Aug 4
- Issue with diversionstructure level sensors, El called in to clean Aug 5
- Grit 6 incline auger jammed Aug 5
- Sec 10 Cross Shear Pin Break Aug 5
- Outfall 30 short term sampler temp too cold. Aug 5
- RAS 4 flow seems to be limited to 30 MLD Aug 5
- Sec 1 O/S, drained for inspection and bio flow meter replacement Aug 6th.
- Leak on DAF WAS line repaired Aug 6th.
- Bio gas leak dig square 1 to basement blower/boiler room 1 Aug 8th.
- Sec 4 cell 4 broken shear pin Aug 9th.
- EPT 11 cross collector broken shear pin Aug 9th.
- Sec 10 cell 1scum trough actuator failed Aug 10th.
- Sec 9 northe west pass boken shear piun Aug 11th.
- RAS 2 discharge pipe pin hole leak/repaired Aug 13th.
- Citric quill cleaned Aug 14th
- PE channel flume installed Aug 15th.
- Bio 1 filled with FE to just above diffusers Aug 16th
- Sec 9 cell 2 broken shear pin Aug 17th.
- Prim 5 east pass broken shear pin blanket 0.33 M Aug 18th.
- Sec 10 cell 3 broken shear pin blanket 5 ft Aug 18th.
- Citric cleans started on membranes Aug 19th.
- PE channel flume pulled out of PE channel gasket leaking Aug 20th.
- Sec 6 cross collector broken shear pin aug 21st.
- Ferm bleach pump 65313 tube failure Aug 22nd.
- Maintenance cleans started on all trains bleach pumping issue noticed Aug 22nd.
- EPT 10 cross collector broken shear pin Aug 22nd.
- Prim 5 west collector drive broken shear pin Aug 23rd.
- APG pipe failure berm of cell 5 contained Aug 24th.
- Sec 9 cell 2 broken shear pin blanket 2 ft Aug 25th.
- Sec 6 cell 1 broken shear pin blanket 3 ft Aug 25th.
- Diversion structure level indicator 2775B dropping to zero Aug 27th.

September

- 6 Secondary Bypass Events Sept 2nd-3rd, 12th, 14th-15th, 15th, 22nd & 26th.
- Voltus outage Sept 19th & 26th.
- Dead beaver found in UV screens Sept 16th.
- Ferm 1 O/S Sept 3rd.
- Dig 7 foam control pump repaired Sepr 4th.
- Ferm 3 sludge blanket level indicator showing fault Sepr 4th.
- Sec 7 cell 2 broken shear pin Sept 6th.

- Membrane bleach dosing pump 26628 discharge leaning Sept 8th.
- Draining prim ¾ Sept 8th.
- GRF carbon scrubber back in service Sept 8th.
- Sec 6 & 7 scum troughs stuck forward Sept 8th.
- Membrane bleach doing pump 26627 leaking from suction side of pump Sept 9th.
- North flame arrestor cleaned Sept 10th.
- Solids shutdown Sept 10th.
- %6 WAS pump replaced Sept 12th.
- Draining sec/bio 5 for inspection and RAS replacement Sept 14th.
- Dig 6 heat exchanger high pressure wash complete Sept 16th.
- Diversion structure screen 31710 hydraulic leak Sept 16th.
- Sec 2 cell 3 broken shear pin Sept 18th.
- Ferm scrubber bleach pump tube failure Sept 19th
- Grit tank 7 incline auger VFD replacement complete Sept 19th.
- Prim 5/6 density meter reading 0% Sept 22nd
- RAS 3 volute leaking on the suction side (hole in the bottom of the volute) Sept 23rd.
- Filling bio/sec 5 Sept 23rd, bio/sec 5 back in service Sept 25th.
- Membrane plant shutdown for maintenance work Sept 23rd.
- Broken flight sec 4 cell 5 removed Sept 23rd.
- Boiler started in boiler house 1 for plant heating Sept 24th.
- Ferm ½ scum tank discharge line has a blockage Sept 25th.
- Membrane plant start up Sept 26th
- Bios 2-5 influent pumps cavitating due to hydraulic bottleneck Sept 26th
- East scrubber sump LT not reading correctly, submersible with float dropped in -Sept 26th
- Secondary Bypass Sept. 26th
- Voltus Sept. 26th
- Voltus Sept. 28th
- Secondary 10 shear pin Sept 28th
- Membrane having issue maintaining levels Sept 28th
- Chemscan 1173 not reading correctly Sept 29th
- Secondary 9 shear pin Sept 29th
- Voltus Sept. 29th

October

- 1 Sec Bypass Event Oct 20th,
- 4 Voltus outages Oct 8th,, 15th, 22nd & 29th.
- Sec 11 dewatering for inspection Oct 1st.
- Testing high pressure bio gas line from chiller room to boler house 1 Oct 1st.
- Sec 11 back in service due to hydraulic restraints on PE chanel level (north) –
 Oct 2nd.
- Membrane bleach pump 26628 suction valve leaking Oct 4th.
- Broken shear pin sec 4 cell 4 Oct 5th.
- Bio 8 and 9 influent pumps replaced Oct 5th.
- Broken shear pin sec 4 cell 5 Oct 5th.
- Influent channel flow meter flow dropping out during peak flow periods Oct 6th.
- Membrane center strainer cleaned out Oct 7th.

- Thinning out bio/sec 4 for inspection and flight repair Oct 8th.
- Bio 6 influent pump replaced (faulty pump) Oct 9th.
- Thinning out EPT 9/10 to prepare for draining and inspection Oct 10th.
- Bio gas leaking from gas valve located in chiller room/isolated Oct 11th.
- Dewatered sec/bio 4 to replace flight in clarifier Oct 13th. unplanned outage broken flight.
- Broken shear pin sec 6 cross collector Oct 13th.
- Sec 4 back in service after flight replacement Oct 16th.
- Solids shutdown and draining blend tanks Oct 16th.
- North blend tank O/S for contractor work Oct 16th.
- Broken shear pin prim 6 cross collector blanket 0.5 ft Oct 17th.
- DAF 1 back inservcie after pressure tank repair Oct 17th
- Dewatered DAF 2 for pressure tank repair Oct 18th.
- Labatts called about a spill of caustic solution pH of 5.7 2.4 cubci meters released – Oct 18th.
- Broken shear pin EPT 10 west collector drive Oct 18th.
- EPT 9/10 deawtering stared for yearly inspection Oct 19th.
- Broken shear pin sec 3 cell 5 Oct 19th.
- Dewatering bio/sec 3 for inspection Oct 20th. unplanned outage RAS volute failure.
- Labatt called to report spill 7.2 cubic meters caustic pH of 11.5-12.7 range –
 Oct 20th,
- East scrubber sump pump falled Oct 21st.
- Running fem scrubber in Al control Oct 22nd.
- Broken shear pin sec 10 cell 3 Oct 23rd.
- Filling sec/bio 1 Oct 25th.
- 2 broken shear pin sec 1 Oct 26th.
- Sec/bio 1 back in full service Oct 26th.
- Boiler house 2 shutdown for natural gas connections Oct 28th.
- Bio 11 cell 3 mixer tripped onoverload Oct 29th.
- Boiler house 2 back in service after natural gas conections complete Oct 29th.
- Brken shear pin sec 4 cell ? Oct 29th.
- Sec 7 waste pump coupling failed replaced Oct 29th.
- East primary influent channel flow meter failed Oct 29th.
- Filling sec/bio 3 to have ready for service –Oct 31st.
- Dig 8 gas space level indicator bouncing around needs to be cleaned. Oct 31st.

November

- Sec Bypass Events 0
- Voltus outages Nov 8th, 27th. & 30th
- Dead Duck Count 4
- Prim 5 broken shear pin Nov 1st.
- Sec 8 cell 3 broken shear pin Nov 1st.
- Sec 3 back in service after RAS volute replacement and clarifier inspection Nov 2nd
- Prim 5 scum tank level indicator failed Nov 2nd.
- PE chanel level indicator LIT 4174 replaced Nov 4th.

- Grit tank 5 dewatered and isolated for incline auger replacement Nov 5th.
- EPT 12 broken shear pin Nov 7th.
- DAF 2 back in service after pressure tank repair Nov 7th.
- West primary influent channel flow meter failed FI-2826 Nov 8th.
- EPT 9/10 back in service after inspection Nov 8th.
- Sec 6 cross collector broken shear pin Nov 9th.
- Draining prim 5/6 for project work Nov 10th.
- Sec 6 cell ½ broken scum trough mount Nov 11th.
- East scrubber bleach pump tube failure Nov 12th.
- Realigning membrane cassettes, add cassettes to train 8 week of Nov 12th.
- EPT 11 west flights broken shear pin Nov 14th.
- PE chanel LIT 4174 dropping out again using 4713 for pump control Nov 14th.
- DAF poly pump 2 leaking at seal Nov 14th.
- Delta V loss of power alarms coming in troubleshooting in progress looks like Delta V cabinet in EPT chemical room is causing the alarm, backup power supply to all Delta V cabinets – Nov 15th.
- Influent channel 2 gate MOG 0102 device card failed postion of gate showing 0%, simuted open so that we get a flow reading for channel 2 Nov 18th.
- Boiler 2 tripping on flame failure Nov 19th.
- Solids shutdown to prepare for electrical panel outage running north flare in manual during outage – Nov 20th.
- Sec 6 cross collector broken shear pin Nov 20th.
- Sec 4 cross collector broken shear pin Nov 20th.
- East scrubber recirc flow dropping off Nov 21st
- Supernatant pumps off low flow Nov 22nd.
- Dewatering EPT 11/12 Nov 22nd.
- EPT 1/12 empty and locked out for inspection Nov 24th.
- Channel 2 level transmitter bouncing around (flow going to zero) Nov 24th.
- Shut off east scrubber fan due to ice build up in fan, low air suction temp recirc pump still running – Nov 24th.
- Broke shear pin sec 4 cell 4 5 ft blanket Nov 27th.
- Broken weir in EPT 12, noticed during cleaning Nov 27th.
- EPT 9 broken shear pin Nov 27th
- Membrane train 1 aeration valve failed shuts of train Nov 28th
- Strathcona and waste discharge redirected to influent channel 3 Nov 28th
- Sec 4 cross collector broken shear pin Nov 29th.
- Voltus outage Nov 30th.
- Grit tank 7 incline auger has multiple leaks.

December

- secondary bypass events Dec 3, 7,8
- Grit tank 7 back in service December 2 –
- Sec 6 cross collector shear pin broken December 4
- Screen 8 VFD tripping Dec 4
- Sec 1 Cell 5 Shear Pin Break Dec 6
- Sec 4 cell 3 Shear Pin Break Dec 6
- Sec 1 Cell 5 Shear Pin Break Dec 6
- Fermenter scrubber bleach pump tube failures Dec 7

- Sec 4 cell 3 Shear pin break Dec 9
- EPT Ploy Pump Tube Failure Dec 9
- Sec 1 cell 1 shear pin break Dec 11
- Screen 8 VFD tripping Dec 11
- NG line pressure testing in boiler house 2- Dec 11
- DAF 2 poly pump tripping Dec 11
- Sec 4 cell 4 broken shear pin Dec 14
- Secondary 9 Cell 2 broken shear pin Dec 15
- Bio 5 cell 8 mixer fail to start Dec 15
- DAF 6 taken out of service Dec 15
- Lagoon supernatant return back on 2.0 MLD- Dec 16
- Sec 4 cross collector shear pin Dec 16
- Instrument Air compressor commication module error Dec 17
- Gas Compressor K102 back in service Dec 18
- DAF 6 back into service Dec 20
- Sec 10 and 11 cell 3 shearping break Dec 22
- Screen 8 back in service Dec 23
- Sec 7 cell 4 Shear pin break Dec 24
- Sec 4 cell 9 shear pin break Dec 24
- Sec 10 cell 3 shear pin break Dec 26
- Sec 6 cross collector shear pin break Dec 26
- Sec 2 RAS pump making noise, then cleared itself Dec 27
- Sec 4 cell 2 Broken shear pin Dec 28
- Sec 4 cell5 scum trough stuck in forward position Dec 28
- Pri 8 Cross shear pin break Dec 30
- Secondary 8 cell 5 shear pin break Dec 31

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report January 2024

		Sc	rubber 1 - East			Scrub	ber 4 - Fermente			Sc	rubber 2 - West			Sc	rubber 3 - EPT			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H₂S In (ppm)	H₂S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H₂S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H₂S Out (ppb)	H₂S Out (ppb)
January 1, 2024	9.5	670.0	0.0	0.0	9.8	669.8	6.0	931.7	9.8	663.0	0.1	0.0	9.8	667.6	23.1	4927.7	20.6	0.1	0.3	0.1	0.7	65.5	
January 2, 2024	9.5	669.9	0.0	0.0	9.8	670.1	6.1	988.9	9.8	626.9	0.1	0.0	9.8	676.7	23.5	5092.4	20.6	0.1	0.3	0.1	0.0	52.4	
January 3, 2024	9.5	670.1	0.8	0.0	9.8	669.9	7.6	1058.4	9.8	667.8	0.1	0.0	9.8	671.3	25.4	5492.1	20.8	0.1	0.3	0.1	0.0	184.7	
January 4, 2024	9.5	669.9	0.0	0.0	9.8	669.9	6.7	1036.2	10.0	646.1	0.1	0.0	9.8	670.1	26.5	5725.5	20.9	0.1	0.3	0.1	0.5	120.2	
January 5, 2024	9.5	670.0	0.0	0.0	9.8	670.0	6.7	1019.1	9.8	665.3	0.1	0.0	9.8	678.5	26.1	5785.8	20.1	0.1	0.3	0.1	0.0	86.4	
January 6, 2024	9.5	670.0	0.0	0.0	9.8	669.9	6.8	1087.4	9.8	666.1	0.1	0.0	9.8	672.0	28.5	6482.7	20.2	0.1	0.3	0.1	0.0	17.1	_
January 7, 2024	9.5	669.9	0.0	0.0	9.8	670.1	7.2	1244.1	9.8	668.0	0.1	0.0	9.8	680.1	25.2	5767.1	20.3	0.1	0.3	0.1	0.1	48.8	_
January 8, 2024	9.5	668.2	0.0	0.0	9.8	670.5	6.3	1162.6	9.8	667.0	0.1	0.0	9.8	689.8	16.1	3630.4	20.4	0.1	0.3	0.1	0.0	18.4	_
January 9, 2024	9.5	668.3	0.4	1.6	9.8	669.6	6.2	1206.4	9.8	666.4	0.1	0.0	9.8	688.3	19.8	4519.9	20.6	0.1	0.3	0.1	0.0	0.0	_
January 10, 2024	9.5	669.9	0.7	73.7	9.8	669.8	8.3	1868.9	9.8	666.9	0.3	69.2	9.8	695.4	20.4	4640.4	20.7	0.1	0.3	0.1	0.0	32.7	_
January 11, 2024	9.6	675.1	1.0	110.6	9.8	672.7	9.2	2349.2	9.8	668.2	0.1	0.0	9.8	695.6	8.9	2300.6	21.0	0.1	0.3	0.1	69.3	283.6	_
January 12, 2024	9.5	670.7	0.5	110.2	9.8	669.9	10.8	3027.5	9.8	668.9	0.1	0.0	9.8	693.7	1.4	385.2	22.9	0.0	0.3	0.1	0.0	212.5	_
January 13, 2024	9.5	669.9	0.0	0.2	9.8	669.9	11.4	3923.0	9.8	669.0	0.1	0.0	9.8	693.2	1.4	241.8	21.6	0.1	0.3	0.1	0.0	12.9	_
January 14, 2024	9.5	669.7	0.2	72.0	9.8	670.0	11.6	3965.8	9.8	668.1	0.1	0.0	9.8	698.8	1.5	171.1	20.9	0.1	0.3	0.1	0.4	0.0	_
January 15, 2024	9.5	668.7	0.1	88.3	9.8	670.2	12.0	3558.1	9.8	668.0	0.1	0.0	9.8	699.8	1.3	67.3	20.7	0.1	0.3	0.1	0.0	0.0	_
January 16, 2024	9.6	672.8	0.4	370.8	9.8	670.0	9.9	2638.1	9.8	667.0	0.1	0.0	9.8	691.3	1.6	0.1	20.5	0.1	0.3	0.1	0.0	0.3	Out of service
January 17, 2024	9.5	670.1	0.5	30.0	9.8	670.1	8.4	2195.4	9.8	667.9	0.2	0.0	9.8	699.7	1.7	0.0	20.6	0.1	0.3	0.1	0.0	26.7	_
January 18, 2024	9.5	670.7	0.5	27.0	9.8	670.0	8.6	2129.2	9.8	667.7	0.1	0.0	9.8	694.9	1.5	0.0	20.9	0.1	0.3	0.1	0.0	13.8	_
January 19, 2024	9.5	670.4	0.4	49.6	9.8	670.1	8.6	2274.6	9.8	667.7	0.1	0.0	9.8	702.4	1.7	3.6	20.5	0.1	0.3	0.1	0.3	37.7	_
January 20, 2024	9.5	669.2	0.5	89.2	9.8	669.9	6.5	1705.6	9.8	666.9	0.1	0.0	9.8	693.7	2.1	0.0	20.4	0.1	0.3	0.1	0.0	33.7	
January 21, 2024	9.5	670.0	0.4	60.5	9.8	670.0	5.9	1534.7	9.8	668.3	0.1	0.0	9.8	702.4	1.5	11.6	19.8	0.1	0.3	0.1	0.0	0.0	_
January 22, 2024	9.5	669.7	0.5	79.4	9.8	670.4	6.3	1503.9	9.8	668.0	0.1	0.0	9.8	687.1	1.8	35.8	20.4	0.1	0.3	0.1	0.0	18.3	_
January 23, 2024	9.5	670.3	0.5	51.5	9.8	667.9	7.9	1864.6	9.8	667.3	0.2	0.0	9.8	683.9	2.2	430.7	20.6	0.1	0.3	0.1	0.0	28.6	_
January 24, 2024	9.5	673.4	0.1	8.7	9.8	667.5	6.2	974.1	9.8	666.1	0.2	0.0	9.8	683.8	1.9	1320.2	20.7	0.1	0.6	0.1	0.0	37.7	_
January 25, 2024	9.5	670.2	0.1	0.0	9.8	668.2	7.4	1113.2	9.8	666.7	0.2	0.0	9.8	691.6	1.8	1300.4	21.5	-0.1	1.6	0.0	0.0	24.6	
January 26, 2024	9.5	670.2	0.0	0.0	9.8	665.8	10.1	1245.2	9.8	667.1	0.1	0.0	9.8	691.7	1.8	1307.5	24.0	-0.5	1.4	0.1	0.0	32.2	_
January 27, 2024	9.5	669.9	0.0	0.0	9.8	668.5	7.6	517.7	9.8	666.4	0.1	0.0	9.8	691.5	2.0	1406.7	23.7	-0.5	0.7	0.1	0.0	28.9	_
January 28, 2024	9.5	670.1	0.0	0.0	9.8	670.9	7.1	163.7	9.8	666.8	0.1	0.0	9.8	696.8	2.0	1416.4	20.9	0.1	0.3	0.1	0.0	29.1	
January 29, 2024	9.5	671.4	0.0	0.0	9.8	678.7	7.3	844.6	9.8	667.6	0.1	0.0	9.8	701.1	1.4	1059.8	21.0	0.1	0.3	0.2	0.0	6.4	
January 30, 2024	9.5	670.4	0.0	0.0	9.8	671.1	6.6	914.4	9.8	670.2	0.0	0.0	9.8	715.3	0.3	362.0	20.9	0.1	0.3	0.1	0.0	1.0	
January 31, 2024	9.5	669.6	0.0	0.0	9.8	669.8	3.9	408.7	9.8	667.4	0.0	0.0	9.8	708.3	1.1	938.3	21.5	-0.2	0.5	0.1	1.3	5.8	
Avg	9.5	670.3	0.2	39.5	9.8	670.1	7.8	1627.6	9.8	665.3	0.1	2.2	9.8	690.5	8.9	2091.1	21.0	0.1	0.4	0.1	2.3	47.1	N/A
Min	9.5	668.2	0.0	0.0	9.8	665.8	3.9	163.7	9.8	626.9	0.0	0.0	9.8	667.6	0.3	0.0	19.8	-0.5	0.3	0.0	0.0	0.0	N/A
Max	9.6	675.1	1.0	370.8	9.8	678.7	12.0	3965.8	10.0	670.2	0.3	69.2	9.8	715.3	28.5	6482.7	24.0	0.1	1.6	0.2	69.3	283.6	N/A

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report February 2024

Data		Sc	rubber 1 - East			Scrub	ber 4 - Fermenter	•		Sc	rubber 2 - West			Sci	rubber 3 - EPT			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H₂S Out (ppb)	pН	ORP (mV)	H₂S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H₂S Out (ppb)	H₂S Out (ppb)	H ₂ S Out (ppb)
February 1, 2024	9.50	670.1	0.00	0.0	9.80	658.3	5.52	552.9	9.80	668.1	0.11	0.0	9.81	701.1	1.5	1221.4	22.0	-0.28	0.51	0.1	0.0	15.6	
February 2, 2024	9.50	669.9	0.00	0.0	9.80	685.6	7.43	509.2	9.80	667.4	0.11	0.0	9.80	704.7	1.9	1612.4	23.7	-0.46	0.76	0.1	0.0	9.3	
February 3, 2024	9.50	669.8	0.00	0.0	9.80	669.9	7.34	813.3	9.81	667.9	0.11	0.0	9.80	705.1	1.9	1631.2	23.8	-0.47	0.74	0.1	0.0	1.8	
February 4, 2024	9.50	670.0	0.00	0.0	9.80	670.0	7.47	954.6	9.80	668.3	0.09	0.0	9.80	713.2	1.8	1493.8	24.7	-0.46	0.76	0.1	0.0	0.2	
February 5, 2024	9.50	670.3	0.00	0.0	9.80	670.3	7.91	1075.7	9.80	668.6	0.04	0.0	9.80	711.6	2.7	2290.4	24.8	-0.45	0.76	0.1	0.0	0.3	
February 6, 2024	9.50	689.7	0.00	0.0	9.80	670.0	7.54	931.0	9.81	669.7	0.04	0.0	9.82	701.8	1.3	854.9	24.5	-0.45	0.77	0.1	0.0	16.4	_
February 7, 2024	9.50	669.9	0.00	0.0	9.80	670.1	7.56	752.1	9.80	668.6	0.04	0.0	9.80	703.6	1.2	763.8	24.2	-0.46	0.76	0.1	0.0	9.3	_
February 8, 2024	9.50	668.1	0.00	0.0	9.80	671.4	7.10	671.6	9.80	667.4	0.05	0.0	9.80	692.9	1.6	1042.9	24.1	-0.47	0.76	0.1	0.5	6.4	_
February 9, 2024		670.0	0.00	0.0	9.80	670.2	6.89	707.8	9.80	667.9	0.07	0.0	9.80	693.4	1.5	976.3	24.5	-0.46	0.76	0.1	0.0	5.3	
February 10, 2024	9.50	670.0	0.00	0.0	9.80	670.1	6.73	714.1	9.80	667.7	0.07	0.0	9.80	689.5	1.7	1131.7	24.9	-0.45	0.77	0.1	0.0	13.3	_
February 11, 2024	9.50	669.9	0.01	0.0	9.80	670.1	6.30	589.3	9.80	666.7	0.05	0.0	9.80	687.5	2.0	1179.3	23.8	-0.48	0.75	0.1	0.0	16.3	
February 12, 2024	9.50	669.9	0.00	0.0	9.80	669.6	5.82	644.0	9.80	667.5	0.08	0.0	9.80	683.6	1.9	1148.3	24.1	-0.46	0.87	0.1	0.2	4.0	_
February 13, 2024		693.6	0.00	0.0	9.77	669.6	8.22	1037.6	9.80	667.1	0.08	0.0	9.80	685.9	2.0	1153.5	24.0	-0.47	0.76	0.1	0.0	19.5	
February 14, 2024		670.1	0.00	0.0	9.80	671.3	5.41	573.1	9.80	668.3	0.05	0.0	9.80	677.6	2.6	1538.0	24.6	-0.47	0.76	0.1	0.0	22.1	1
February 15, 2024		670.1	0.00	0.0	9.80	670.1	4.73	551.4	9.80	667.9	0.10	0.0	9.80	675.4	3.2	1892.3	24.5	-0.46	0.77	0.1	0.0	7.5	Out of Service
February 16, 2024	9.50	670.0	0.00	0.0	9.80	669.8	5.07	581.0	9.79	668.1	0.05	0.0	9.80	673.2	3.4	1991.5	24.6	-0.46	0.76	0.1	0.0	3.1	
February 17, 2024		669.9	0.00	0.0	9.80	670.0	5.02	523.3	9.79	666.8	0.09	0.0	9.80	676.6	2.9	1695.2	24.2	-0.47	0.77	0.1	0.3	1.2	
February 18, 2024		670.0	0.00	0.0	9.80	669.8	5.51	604.2	9.80	665.6	0.24	0.0	9.80	686.1	1.7	1036.9	24.4	-0.47	0.76	0.1	0.0	45.4	
February 19, 2024		670.0	0.00	0.0	9.80	669.9	5.95	642.8	9.80	666.2	0.22	0.0	9.80	694.7	1.3	789.5	24.3	-0.46	0.76	0.1	0.0	3.1	
February 20, 2024		670.2	0.00	0.0	9.80	669.6	6.86	756.5	9.80	665.2	0.11	0.0	9.80	696.4	1.0	647.0	24.0	-0.46	0.76	0.1	0.0	9.8	
February 21, 2024		670.0	0.00	0.0	9.77	667.1	7.05	872.2	9.80	667.9	0.03	0.0	9.80	706.1	0.8	527.3	23.9	-0.47	0.77	0.0	0.0	5.6	
February 22, 2024		674.3	0.00	0.0	9.81	671.0	6.36	706.9	9.81	670.2	0.05	0.0	9.79	717.5	0.9	544.2	23.5	-0.48	0.76	0.1	0.0	4.0	
February 23, 2024		670.0	0.00	0.0	9.80	670.0	6.27	809.5	9.80	669.8	0.03	0.0	9.81	698.7	0.7	448.7	23.1	-0.48	0.75	0.1	0.0	5.4	
February 24, 2024		669.9	0.00	0.0	9.80	670.0	6.38	849.2	9.79	668.9	0.03	0.0	9.80	699.2	1.0	571.6	23.4	-0.48	0.75	0.1	0.0	30.7	1
February 25, 2024		670.1	0.00	0.0	9.80	669.5	8.03	1272.1	9.81	669.4	0.09	0.0	9.81	694.1	1.0	604.2	24.2	-0.46	0.75	0.1	0.0	38.9	
February 26, 2024		670.0	0.00	0.0	9.81	670.8	6.74	1075.7	9.80	669.8	0.06	0.0	9.81	716.2	0.6	378.9	24.2	-0.46	0.77	0.1	0.0	9.8	
February 27, 2024		670.0	0.00	0.0	9.80	670.4	6.08	1107.0	9.76	670.1	0.02	0.0	9.80	705.6	0.6	304.8	25.0	-0.44	0.77	0.1	0.0	55.6	1
February 28, 2024		670.1	0.00	0.0	9.80	669.9	6.63	1745.2	9.80	669.4	1.09	0.0	9.79	713.2	1.5	504.3	25.5	-0.43	0.75	0.1	0.0	62.5	
February 29, 2024	9.50	669.9	0.00	0.0	9.80	670.2	5.71	1701.4	9.80	667.9	1.84	0.0	9.80	705.2	2.5	737.1	25.4	-0.44	0.75	0.1	0.0	11.8	
											1				1						1		
Avg	9.50	671.6	0.00	0.0	9.80	670.2	6.54	838.8	9.80	668.1	0.17	0.00	9.80	696.9	1.7	1059.0	24.2	-0.46	0.75	0.1	0.0	15.0	N/A
Min	9.50	668.1	0.00	0.0	9.77	658.3	4.73	509.2	9.76	665.2	0.02	0.00	9.79	673.2	0.6	304.8	22.0	-0.48	0.51	0.0	0.0	0.2	N/A
Max	9.63	693.6	0.01	0.0	9.81	685.6	8.22	1745.2	9.81	670.2	1.84	0.00	9.82	717.5	3.4	2290.4	25.5	-0.28	0.87	0.1	0.5	62.5	N/A

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report March 2024

D-4-		Scrubber 1 - East				Scrubber 4 - Fermenter				Sci	rubber 2 - West			Sc	rubber 3 - EPT			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H₂S Out (ppb)	H₂S Out (ppb)	H₂S Out (ppb)
March 1, 2024	9.50	670.0	0.00	0.0	9.80	669.9	6.22	1825.5	9.80	667.9	1.98	0.0	9.80	709.4	2.6	786.1	25.6	-0.45	0.76	0.1	0.0	0.2	
March 2, 2024	9.50	670.0	0.00	0.0	9.80	669.8	6.47	2115.0	9.80	667.4	1.88	0.0	9.80	707.3	2.7	824.1	25.8	-0.45	0.77	0.1	0.0	0.1	
March 3, 2024	9.50	669.9	0.00	0.0	9.80	670.0	7.57	2649.4	9.80	667.2	1.99	0.0	9.80	708.9	2.5	759.7	25.9	-0.45	0.76	0.1	0.0	0.4	
March 4, 2024	9.50	670.1	0.00	0.0	9.80	670.0	7.80	2859.4	9.80	668.7	1.68	0.0	9.80	711.5	1.8	523.6	25.1	-0.45	0.76	0.1	0.0	13.9	
March 5, 2024	9.50	670.0	0.00	0.0	9.80	670.1	7.41	2642.8	9.80	667.8	1.78	0.0	9.80	716.9	2.3	704.8	25.0	-0.45	0.76	0.1	0.0	12.6	
March 6, 2024	9.48	675.4	0.00	0.0	9.79	670.1	7.82	2549.6	9.79	668.9	1.66	0.0	9.80	692.7	2.1	655.5	24.0	-0.45	0.77	0.1	0.1	27.3	
March 7, 2024	9.50	669.9	0.00	0.0	9.81	670.2	7.31	1126.3	9.80	667.8	1.68	0.0	9.80	689.8	2.4	715.6	25.4	-0.45	0.76	0.1	0.0	14.9	
March 8, 2024	9.50	670.0	0.00	0.0	9.80	670.1	5.23	710.2	9.80	667.1	1.78	0.0	9.80	683.6	2.8	842.9	24.3	-0.47	0.76	0.1	0.0	8.3	
March 9, 2024	9.50	669.9	0.00	0.0	9.80	669.5	5.41	692.8	9.80	666.7	1.99	0.0	9.80	680.7	3.3	980.3	23.4	-0.47	0.75	0.1	0.0	7.4	
March 10, 2024	9.50	669.3	0.01	0.1	9.80	670.3	5.53	617.8	9.80	667.6	1.59	0.0	9.80	679.3	4.1	1356.2	22.8	-0.48	0.75	0.1	0.0	6.5	
March 11, 2024	9.50	670.5	0.18	0.0	9.80	670.0	4.25	453.2	9.81	668.9	0.54	0.0	9.80	700.9	1.9	515.9	23.3	-0.49	0.75	0.1	0.0	2.2	
March 12, 2024	9.46	702.0	0.00	0.0	9.78	669.9	3.28	247.2	9.79	667.5	0.78	0.0	9.80	692.8	2.2	716.8	23.4	-0.49	0.75	0.1	0.0	1.0	
March 13, 2024	9.50	670.2	0.00	0.0	9.80	669.8	2.67	128.6	9.80	668.0	0.61	0.0	9.80	702.6	1.6	426.1	23.6	-0.48	0.77	0.1	0.0	0.2	
March 14, 2024	9.50	670.1	0.00	0.0	9.80	670.4	2.70	112.2	9.80	669.2	0.46	0.0	9.80	703.1	1.9	494.5	23.1	-0.50	0.76	0.1	0.0	0.0	
March 15, 2024	9.49	670.0	0.00	0.0	9.80	670.2	2.50	86.2	9.80	669.9	0.29	0.0	9.80	713.4	1.5	366.4	16.6	-0.53	0.76	0.1	0.0	0.0	
March 16, 2024	9.51	669.9	0.00	0.0	9.80	669.8	2.24	66.1	9.80	668.8	0.58	0.0	9.80	703.8	2.2	614.6	7.7	-0.54	0.80	0.1	0.0	0.0	Out of Service
March 17, 2024	9.50	669.8	0.00	0.0	9.80	669.6	2.98	114.6	9.80	669.0	0.86	0.0	9.80	697.0	2.5	697.5	8.6	-0.10	0.45	0.1	0.0	0.0	
March 18, 2024	9.50	669.8	0.00	0.0	9.77	669.3	3.33	131.8	9.81	668.9	0.85	0.0	9.81	710.1	1.3	304.6	18.1	0.09	0.27	0.1	0.0	0.7	
March 19, 2024	9.50	670.0	0.00	0.0	9.78	670.7	3.47	178.5	9.80	668.5	0.92	0.0	9.80	697.7	1.6	398.2	21.8	0.10	0.27	0.1	0.0	0.1	
March 20, 2024	9.50	669.9	0.00	0.0	9.80	669.8	4.52	340.8	9.80	668.5	1.18	0.0	9.80	699.5	1.8	439.1	21.4	0.11	0.27	0.1	0.0	3.5	
March 21, 2024	9.51	675.5	0.00	0.0	9.80	669.5	4.48	298.0	9.80	668.8	1.24	0.0	9.80	704.9	1.7	425.6	21.2	0.11	0.28	0.1	0.0	11.8	
March 22, 2024	9.50	669.9	0.00	0.0	9.80	669.8	4.24	186.9	9.80	668.3	1.41	0.0	9.80	701.3	1.9	471.7	20.9	0.11	0.28	0.1	0.0	3.8	
March 23, 2024	9.50	670.2	0.00	0.0	9.80	670.1	4.47	191.7	9.80	667.5	1.73	0.0	9.80	694.4	2.4	648.3	21.3	0.12	0.28	0.1	0.0	23.0	
March 24, 2024	9.50	670.0	0.00	0.0	9.80	670.2	4.43	172.1	9.80	585.2	1.59	0.0	9.80	620.2	2.4	728.0	21.2	0.11	0.27	0.1	0.0	24.2	
March 25, 2024	9.50	670.1	0.00	0.0	9.80	670.0	4.23	149.5	9.80	668.4	1.60	0.0	9.80	694.2	2.0	549.8	21.5	0.07	0.30	0.0	0.0	19.7	
March 26, 2024	9.50	670.1	0.00	0.0	9.80	669.8	4.32	154.3	9.80	668.6	1.48	0.0	9.80	691.6	2.3	634.2	24.2	-0.47	0.75	0.1	0.0	24.4	
March 27, 2024	9.50	670.2	0.00	0.0	9.80	670.1	4.37	114.1	9.84	647.6	1.30	0.0	9.80	693.2	2.5	680.9	23.3	-0.49	0.74	0.1	0.0	18.3	
March 28, 2024	9.50	670.2	0.00	0.0	9.80	670.7	4.49	228.9	9.80	668.0	1.30	0.0	9.80	696.4	2.4	702.8	24.2	-0.49	1.22	0.1	0.0	0.1	
March 29, 2024	9.50	670.1	0.00	0.0	9.80	669.8	4.14	230.2	9.80	667.8	1.39	0.0	9.80	696.1	2.5	726.9	24.6	-0.48	1.68	0.1	0.0	3.1	
March 30, 2024	9.50	669.9	0.00	0.0	9.80	669.9	4.44	230.2	9.80	667.6	1.72	0.0	9.80	693.2	2.5	727.0	24.2	-0.48	0.76	0.1	0.0	43.6	
March 31, 2024	9.50	669.8	0.00	0.0	9.80	669.9	5.06	230.3	9.80	667.6	1.73	0.0	9.80	689.7	2.8	835.2	23.5	-0.49	0.75	0.1	0.0	81.7	
																					•		
Avg	9.50	671.4	0.01	0.0	9.80	670.0	4.75	704.3	9.80	664.8	1.34	0.0	9.80	696.0	2.3	653.3	22.1	-0.32	0.67	0.1	0.0	11.4	N/A
Min	9.46	669.3	0.00	0.0	9.77	669.3	2.24	66.1	9.79	585.2	0.29	0.0	9.80	620.2	1.3	304.6	7.7	-0.54	0.27	0.0	0.0	0.0	N/A
Max	9.51	702.0	0.18	0.1	9.81	670.7	7.82	2859.4	9.84	669.9	1.99	0.0	9.81	716.9	4.1	1356.2	25.9	0.12	1.68	0.1	0.1	81.7	N/A

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report April 2024

		Sci	rubber 1 - East			Scrub	ber 4 - Fermenter			Scr	ubber 2 - West			Scri	ubber 3 - EPT			Scru	ubber 5			Scru	bber 6			GRF Scru	ibber		Grit 6/7 Building Scrubber	Grit 6/7 Building Scrubber Screen 4-8 Building Scrubber Dewater	
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pH	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pH	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
April 1, 2024	9.49	670.0	0.00	0.0	9.80	670.4	4.56	230.3	9.80	667.4	1.76	0.0	9.80	692.6	2.9	893.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.6	-0.51	0.76	0.1	0.0	14.6	
April 2, 2024	9.53	672.5	0.00	0.0	9.81	671.9	4.93	247.8	9.81	669.3	1.55	0.0	9.80	710.3	2.7	826.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.4	-0.51	0.75	0.1	0.0	37.2	1
April 3, 2024	9.50	670.2	0.00	0.0	9.80	670.1	4.98	370.6	9.80	668.6	1.44	0.0	9.80	697.3	2.8	941.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.9	-0.52	0.75	0.1	0.0	43.4	1
April 4, 2024	9.51	670.5	0.00	0.0	9.82	670.0	5.08	372.2	9.80	668.3	1.40	0.0	9.80	694.7	2.7	913.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23.4	-0.49	0.76	0.1	0.0	27.2	
April 5, 2024	9.50	670.1	0.00	0.0	9.80	669.8	5.33	492.7	9.80	668.5	1.28	0.0	9.80	687.6	3.2	1101.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23.3	-0.49	0.66	0.1	0.0	8.4	
April 6, 2024	9.50	669.8	0.00	0.0	9.80	670.0	4.16	299.5	9.80	667.8	1.26	0.0	9.80	695.1	2.8	897.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23.4	-0.49	0.76	0.1	0.0	19.6	
April 7, 2024	9.50	669.8	0.00	0.0	9.80	669.7	4.67	314.8	9.80	667.2	1.80	0.0	9.80	690.8	2.9	912.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23.0	-0.50	0.76	0.1	0.0	80.0	
April 8, 2024	9.50	670.0	0.35	0.1	9.80	669.2	5.72	557.7	9.80	668.0	1.81	64.0	9.80	695.6	2.7	924.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.4	-0.52	0.74	0.1	0.0	235.3	
April 9, 2024	9.50	670.0	0.00	0.0	9.80	669.8	5.72	469.1	9.80	667.9	1.42	0.0	9.80	691.2	1.8	609.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.4	-0.52	0.75	0.1	0.0	516.6	
April 10, 2024	9.50	670.1	0.00	0.0	9.80	670.3	5.46	415.3	9.80	667.7	1.30	0.0	9.80	694.7	1.7	608.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.6	-0.52	0.75	0.1	0.0	512.1	
April 11, 2024	9.50	669.9	0.00	0.0	9.81	670.0	5.59	488.2	9.77	668.4	1.15	0.0	9.80	689.9	1.8	643.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.5	-0.51	0.74	0.1	0.0	435.6	
April 12, 2024	9.50	670.1	0.00	0.0	9.80	670.4	5.40	498.2	9.80	668.9	1.26	0.0	9.80	686.5	2.1	770.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.0	-0.51	0.76	0.1	0.0	338.3	
April 13, 2024	9.50	670.0	0.00	0.0	9.80	670.0	4.97	426.5	9.80	668.2	1.28	0.0	9.80	694.4	2.1	757.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.3	-0.51	0.76	0.1	0.0	163.8	
April 14, 2024	9.50	669.8	0.00	0.0	9.80	670.1	4.57	379.5	9.80	669.2	1.06	0.0	9.80	687.3	2.2	811.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.2	-0.51	0.76	0.1	0.0	216.3	
April 15, 2024	9.50	670.2	0.00	0.0	9.79	669.5	5.15	453.5	9.80	670.4	0.88	0.0	9.80	695.3	1.8	643.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.1	-0.52	0.74	0.1	0.0	83.4	Out of Service
April 16, 2024		670.2	0.00	159.7	9.80	670.4	5.47	511.5	9.80	670.1	0.71	0.0	9.80	690.9	2.4	924.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23.3	-0.51	0.74	0.1	117.1	112.9	Out of Service
April 17, 2024	9.50	670.1	0.00	0.0	9.80	670.3	4.73	360.8	9.80	670.2	0.47	0.0	9.80	699.9	1.4	513.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23.7	-0.51	0.71	0.1	0.0	58.9	
April 18, 2024	9.51	673.9	0.00	0.0	9.80	672.4	4.51	370.8	9.79	668.5	0.72	0.0	9.79	691.3	2.2	860.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23.1	-0.51	0.56	0.1	0.0	304.8	
April 19, 2024	9.50	670.0	0.00	0.0	9.80	670.0	4.76	362.9	9.80	670.1	0.77	0.0	9.80	679.7	2.3	981.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23.4	-0.50	0.51	0.1	0.0	483.1	
April 20, 2024	9.50	669.8	0.00	0.0	9.80	670.1	4.52	287.2	9.80	669.6	1.04	0.0	9.80	680.0	3.3	1401.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.7	-0.51	0.51	0.1	0.0	783.6	
April 21, 2024	9.50	670.1	0.00	0.0	9.80	669.6	4.67	300.7	9.80	669.8	0.96	0.0	9.80	677.9	3.0	1228.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22.3	-0.52	0.49	0.1	0.4	536.8	
April 22, 2024	9.50	670.0	0.00	0.0	9.80	669.9	4.60	251.9	9.80	670.3	0.95	0.0	9.80	688.1	2.6	1002.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21.5	-0.54	0.47	0.1	0.1	379.4	
April 23, 2024	9.50	669.9	0.00	0.0	9.80	669.2	4.50	224.6	9.80	669.5	1.14	0.0	9.80	685.9	2.6	983.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21.7	-0.53	0.50	0.1	0.0	1490.7	
April 24, 2024	9.50	669.7	0.00	0.0	9.79	677.8	4.84	119.6	9.80	667.9	1.86	0.0	9.49	662.3	1.2	273.4	9.4	658.5	1.8	102.5	N/A	N/A	N/A	N/A	21.5	-0.53	0.48	0.1	0.0	2012.4	
April 25, 2024	9.50	670.0	0.00	0.0	9.80	672.8	4.79	249.7	9.80	669.7	1.00	0.0	N/A	N/A	N/A	N/A	9.5	668.9	2.6	11.3	N/A	N/A	N/A	N/A	22.0	-0.53	0.49	0.1	0.7	2524.8	
April 26, 2024	9.50	670.4	0.00	0.0	9.80	670.7	5.53	387.8	9.80	669.7	1.22	0.0	N/A	N/A	N/A	N/A	9.5	670.0	4.0	7.5	N/A	N/A	N/A	N/A	22.7	-0.53	0.49	0.1	0.7	3098.5	
April 27, 2024	9.50	669.7	0.00	0.0	9.80	669.8	5.38	393.0	9.80	669.5	1.45	0.0	N/A	N/A	N/A	N/A	9.5	669.9	5.1	6.8	N/A	N/A	N/A	N/A	22.1	-0.55	0.49	0.1	5.9	3841.9	
April 28, 2024	9.50	670.1	0.00	0.0	9.80	670.0	5.64	359.9	9.80	669.1	1.48	0.0	N/A	N/A	N/A	N/A	9.5	670.3	5.4	15.3	N/A	N/A	N/A	N/A	22.0	-0.54	0.49	0.1	44.5	4368.0	
April 29, 2024	9.48	665.2	0.00	0.0	9.79	671.2	6.16	347.1	9.79	665.5	1.04	0.0	N/A	N/A	N/A	N/A	9.5	668.4	3.5	18.1	N/A	N/A	N/A	N/A	22.2	-0.55	0.48	0.1	42.4	1377.1	
April 30, 2024	9.51	674.8	0.16	0.0	9.80	670.3	5.24	249.7	9.80	670.8	0.57	0.0	N/A	N/A	N/A	N/A	9.4	652.0	5.2	16.6	9.4	689.6	0.0	-0.4	22.8	-0.52	0.37	0.1	18.3	1521.4	
Avg	9.50	670.2	0.02	5.3	9.80	670.5	5.05	359.8	9.80	668.9	1.20	2.1	9.79	690.0	2.4	851.0	9.5	665.4	4.0	25.4	9.4	689.6	0.0	-0.4	22.6	-0.52	0.63	0.1	7.7	854.2	N/A
Min	9.48	665.2	0.00	0.0	9.79	669.2	4.16	119.6	9.77	665.5	0.47	0.0	9.49	662.3	1.2	273.4	9.4	652.0	1.8	6.8	9.4	689.6	0.0	-0.4	21.5	-0.55	0.37	0.1	0.0	8.4	N/A
Max	9.53	674.8	0.35	159.7	9.82	677.8	6.16	557.7	9.81	670.8	1.86	64.0	9.80	710.3	3.3	1401.9	9.5	670.3	5.4	102.5	9.4	689.6	0.0	-0.4	23.7	-0.49	0.76	0.1	117.1	4368.0	N/A

Indicates data for partial day

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report May 2024

Date		Scrubber 1 - East			Scrubbe	r 4 - Fermenter			Scr	ubber 2 - West			Scr	ubber 3 - EPT			Scru	ıbber 5			Scrub	ber 6			GRF Scru	ıbber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pH ORP (mV) H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H₂S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H₂S Out (ppb)	H₂S Out (ppb)
May 1, 2024	9.49 678.5	0.00	0.0	9.81	672.2	3.37	68.4	9.80	669.9	0.01	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	0.0	0.0	22.7	-0.54	0.44	0.1	13.0	226.2	
May 2, 2024	9.50 669.5	0.00	0.0	9.80	669.5	2.72	33.0	9.80	669.3	0.34	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.6	0.5	0.0	22.4	-0.55	0.48	0.1	5.2	403.0	
May 3, 2024	9.45 664.5	0.01	0.0	9.80	670.0	3.20	42.7	9.79	669.2	0.67	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	2.7	0.0	22.4	-0.54	0.48	0.1	0.0	989.9	1
May 4, 2024	9.51 674.9	0.00	0.0	9.80	669.7	3.84	63.4	9.80	668.3	0.95	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	3.6	0.1	22.4	-0.54	0.47	0.1	0.0	1137.0	1
May 5, 2024	9.50 674.5	0.00	0.0	9.80	669.3	4.28	55.8	9.80	666.6	1.15	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.9	4.3	4.5	21.7	-0.56	0.48	0.1	0.1	1311.0	
May 6, 2024	9.50 670.7	0.00	0.0	9.78	681.2	4.39	38.7	9.80	666.7	0.75	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	666.6	4.4	9.2	22.1	-0.55	0.44	0.1	25.9	678.6	
May 7, 2024	9.51 671.4	0.00	0.0	9.80	644.3	4.72	118.0	9.81	669.0	0.11	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	673.1	3.0	1.5	22.4	-0.54	0.31	0.1	22.0	364.4	
May 8, 2024	9.49 696.3	0.00	0.0	9.82	659.3	2.54	59.8	9.72	652.0	0.00	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	678.2	0.6	7.3	21.9	-0.56	0.50	0.1	3.5	56.6	
May 9, 2024	9.48 702.3	0.00	0.0	9.80	636.3	2.51	130.1	9.80	669.8	0.00	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	672.2	1.5	13.7	21.6	-0.57	0.48	0.1	0.0	68.8	
May 10, 2024	9.51 678.2	0.00	0.0	9.80	649.2	2.89	133.0	9.80	670.0	0.06	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	2.7	21.7	22.5	-0.57	0.48	0.1	1.6	164.0	
May 11, 2024	9.50 669.5	0.02	0.0	9.80	669.3	3.18	44.9	9.79	667.4	0.53	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.4	3.9	22.8	20.7	-0.57	0.48	0.1	0.0	721.7	
May 12, 2024	9.50 673.1	0.10	0.5	9.80	669.6	3.62	61.8	9.81	667.8	0.69	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	4.7	16.4	21.4	-0.57	0.48	0.1	7.7	822.6	
May 13, 2024	9.50 671.0	0.16	0.0	9.94	668.3	3.86	45.1	9.79	665.0	1.02	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	4.7	16.9	21.3	-0.57	0.48	0.1	15.9	1488.9	
May 14, 2024	9.50 676.4	0.04	0.0	9.99	667.6	4.90	8.5	9.80	667.2	0.65	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	2.6	19.1	21.2	-0.58	0.47	0.1	2.2	1047.7	
May 15, 2024	9.50 668.8	0.16	0.0	9.73	675.7	5.53	109.2	9.81	667.2	0.78	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.9	4.7	15.2	21.4	-0.57	0.49	0.1	10.0	1487.0	
May 16, 2024	9.55 672.6	0.26	0.0	9.50	670.4	4.86	289.8	9.81	669.2	0.45	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	670.1	6.4	9.4	21.9	-0.54	0.42	0.1	19.5	1307.1	Out of Service
May 17, 2024	9.50 669.9	0.00	0.0	9.34	670.2	3.35	208.7	9.80	669.1	0.23	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	670.4	2.0	3.7	22.4	-0.54	0.47	0.1	5.7	828.5	
May 18, 2024	9.50 670.8	0.00	0.0	9.30	670.1	4.47	381.1	9.79	668.0	0.67	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.5	4.0	5.2	22.4	-0.55	0.47	0.1	1.1	1309.8	
May 19, 2024	9.50 668.7	0.01	0.0	9.43	668.2	4.66	373.3	9.80	667.2	0.63	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	668.6	5.6	1.0	22.3	-0.54	0.44	0.1	4.4	836.8	
May 20, 2024	9.50 670.0	0.06	0.0	9.80	670.3	5.43	63.2	9.80	667.8	0.28	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	671.9	2.2	0.6	22.4	-0.56	0.44	0.1	8.9	797.7	
May 21, 2024	9.50 670.5	0.02	0.0	9.80	668.9	6.12	112.6	9.80	666.4	0.82	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.2	3.0	6.7	22.1	-0.54	0.49	0.1	4.0	986.1	
May 22, 2024	9.49 670.1	0.07	0.0	9.80	670.0	6.76	105.2	9.77	664.7	0.83	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	652.2	5.6	11.2	21.9	-0.53	0.49	0.1	8.9	1022.4	
May 23, 2024	9.50 668.7	0.04	0.0	9.80	671.2	5.62	53.8	9.80	667.6	0.12	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	686.6	2.2	8.0	22.0	-0.52	0.49	0.1	0.8	321.0	
May 24, 2024	9.51 671.2	0.01	0.0	9.80	668.4	6.77	92.1	9.80	666.9	1.16	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.9	3.2	9.9	21.9	-0.53	0.46	0.1	1.4	1861.5	
May 25, 2024	9.50 670.4	0.00	0.0	9.80	670.3	6.51	101.0	9.80	668.4	0.89	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	3.9	13.5	21.4	-0.53	0.47	0.1	2.2	1217.7	
May 26, 2024	9.49 669.7	0.08	0.0	9.80	667.3	6.50	129.2	9.79	668.5	0.90	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	659.9	6.6	18.1	21.4	-0.53	0.49	0.1	16.4	1116.3	
May 27, 2024	9.50 669.4	0.02	0.0	9.79	542.2	5.77	246.1	9.78	666.7	1.20	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	679.1	3.8	20.2	21.6	-0.54	0.48	0.1	11.1	1123.1	
May 28, 2024	9.50 670.7	0.00	0.0	9.59	660.7	8.81	664.4	9.81	666.3	1.59	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	666.7	3.6	22.8	21.4	-0.55	0.48	0.0	13.3	944.0	
May 29, 2024	9.51 673.8	0.00	0.0	9.50	650.2	8.33	990.6	9.81	668.3	1.38	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	665.6	3.7	22.0	20.9	-0.55	0.48	0.1	7.8	1198.5	
May 30, 2024	9.50 670.3	0.00	0.0	9.50	650.2	8.52	1199.2	9.80	667.5	1.75	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.6	4.2	12.7	21.6	-0.55	0.46	0.1	18.3	1799.9	
May 31, 2024	9.50 670.1	0.00	0.0	9.50	650.1	8.84	1135.1	9.80	668.1	1.51	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.6	4.8	13.6	21.6	-0.54	0.47	0.1	20.8	1747.5	
Avg	9.50 673.1	0.03	0.0	9.72		5.06	230.9		667.3	0.71	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.9	3.5	10.6	21.8	-0.55	0.47	0.1	8.1	947.9	N/A
Min	9.45 664.5	0.00	0.0	9.30	542.2	2.51	8.5	9.72		0.00	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	652.2	0.0	0.0	20.7	-0.58	0.31	0.0	0.0	56.6	N/A
Max	9.55 702.3	0.26	0.5	9.99	681.2	8.84	1199.2	9.81	670.0	1.75	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	686.6	6.6	22.8	22.7	-0.52	0.50	0.1	25.9	1861.5	N/A

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report June 2024

Dete		Sci	ubber 1 - East			Scrub	bber 4 - Fermenter	•		Scrubb	er 2 - West		Sc	rubber 3 - EPT			Sci	ubber 5			Scr	ubber 6			GRF Scru	ibber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV) H	2S In (ppm) H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm) H2S Out (ppb)	pH	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
June 1, 20	24 9.50	669.9	0.00	0.0	9.50	650.3	8.45	976.4	9.80	666.0	2.16 0.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.9	6.1	15.6	21.3	-0.55	0.47	0.1	28.2	2290.3	
June 2, 20	24 9.50	669.6	0.02	0.0	9.50	649.8	8.63	1017.6	9.80	666.3	2.41 3.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	6.0	16.8	21.4	-0.56	0.46	0.1	13.8	2132.7	1 1
June 3, 20	24 9.51	671.1	0.02	0.0	9.79	669.3	7.56	392.2	9.81	667.6	1.58 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	667.8	7.3	15.2	18.2	-0.55	0.40	0.1	16.8	918.9	1
June 4, 20	24 9.50	669.8	0.00	0.0	9.97	695.3	4.06	13.6	9.80	669.3	0.10 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	669.3	2.8	17.5	15.0	-0.55	0.49	0.1	20.8	49.4	1
June 5, 20	24 9.50	669.4	0.00	0.0	10.01	696.5	4.11	0.0	9.80	667.8	0.74 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.6	2.5	13.9	15.6	-0.57	0.47	0.1	5.9	333.2]
June 6, 20	24 9.50	669.5	0.00	0.0	9.99	697.1	5.02	0.0	9.80	667.4	1.34 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	2.8	13.9	15.9	-0.57	0.48	0.1	0.0	548.0	
June 7, 20	24 9.50	670.3	0.02	0.0	10.00	704.1	5.33	0.1	9.80	667.0	1.59 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.9	5.8	13.3	15.8	-0.56	0.48	0.1	1.7	838.7	
June 8, 20	24 9.50	670.1	0.00	0.0	10.00	702.3	6.15	22.6	9.80	667.6	1.84 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	667.4	6.6	2.2	10.3	-0.56	0.43	0.1	29.0	1656.5	
June 9, 20	24 9.50	670.4	0.00	0.0	10.00	700.0	6.84	37.7	9.80	667.2	2.09 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	671.2	6.6	1.1	11.6	-0.35	0.33	0.1	22.9	2504.1	
June 10, 20	24 9.50	669.9	0.00	0.0	10.00	700.0	8.30	39.2	9.80	667.1	2.38 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	6.6	13.2	15.8	-0.57	0.48	0.1	33.2	2190.6	
June 11, 20	24 9.51	670.8	0.01	0.0	9.97	700.9	16.15	2246.7	9.77	666.1	2.14 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.3	659.1	6.6	22.1	18.3	-0.56	0.46	0.1	44.0	2076.4	
June 12, 20	24 9.47	670.7	0.00	0.0	9.93	701.0	7.13	60.9	9.79	668.8	0.38 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	670.8	6.6	15.2	22.3	-0.52	0.42	0.1	20.2	399.0	
June 13, 20	24 9.50	671.1	0.00	0.0	9.97	697.4	9.38	104.2	9.96	650.4	1.01 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	647.9	6.6	16.4	21.5	-0.24	0.22	0.1	7.5	1328.0	
June 14, 20	24 9.50	670.3	0.00	0.0	9.99	700.3	9.66	56.6	9.80	666.7	1.78 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	668.9	6.6	7.4	20.9	-0.55	0.46	0.1	0.0	1918.2	
June 15, 20		669.9	0.00	0.0	10.02	702.3	8.77	96.6	9.80	667.0	1.80 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	6.6	1.9	21.2	-0.53	0.46	0.1	0.0	2287.2	Out of Service
June 16, 20	24 9.50	670.2	0.00	0.0	9.95	694.9	8.87	346.7	9.80	667.3	2.20 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	6.6	0.0	21.4	-0.53	0.50	0.1	0.0	2844.8	
June 17, 20		670.3	0.00	0.0	9.70	659.6	7.45	718.2	9.80	665.3	1.96 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	668.6	6.6	0.0	21.9	-0.52	0.39	0.1	0.0	3207.1	
June 18, 20		669.7	0.00	0.0	9.70	660.0	7.48	399.8	9.80	666.7	1.51 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	670.8	6.6	0.0	21.8	-0.53	0.48	0.1	0.0	2814.3	1
June 19, 20	24 9.53	687.3	0.00	0.3	9.70	670.7	12.66	399.8	9.86	662.1	1.76 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	6.6	0.1	21.4	-0.54	0.47	0.0	0.0	3244.9	
June 20, 20		669.8	0.00	0.0	9.70	660.0	6.95	523.4	9.80	666.5	2.02 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	6.6	5.1	21.1	-0.55	0.47	0.1	0.0	3844.8	1
June 21, 20		669.9	0.00	0.0	9.70	659.9	7.40	1171.6	9.80	666.1	2.48 7.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	6.6	9.0	21.5	-0.56	0.47	0.1	0.0	4330.1	1
June 22, 20		669.9	0.00	0.0	9.70	659.8	6.92	1230.8	9.80	666.1	2.71 0.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	6.6	10.0	22.0	-0.55	0.45	0.1	0.0	3908.6	1
June 23, 20		670.0	0.00	0.0	9.70	659.8	7.84	1196.0	9.79	665.2	3.21 35.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	662.3	6.6	18.5	22.1	-0.55	0.46	0.1	0.0	3935.8	1
June 24, 20		674.1	0.00	0.0	9.78	672.1	8.26	917.3	9.81	667.8	3.01 7.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	671.5	4.0	8.6	20.7	-0.55	0.46	0.1	0.0	3455.0	1
June 25, 20		669.9	0.00	0.0	9.90	689.9	8.06	437.2	9.79	665.4	3.19 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	683.7	0.0	5.3	20.9	-0.55	0.47	0.1	0.0	6910.8	4 1
June 26, 20		669.9	0.00	0.0	9.90	689.8	7.36	278.1	9.80	667.2	3.27 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	682.0	0.0	10.4	21.5	-0.55	0.46	0.1	0.0	7608.8	1
June 27, 20	_	670.8	0.00	0.0	9.90	689.6	7.97	365.5	9.80	667.4	2.66 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	671.6	0.0	11.6	20.4	-0.54	0.39	0.1	0.0	4694.6	1
June 28, 20		669.3	0.00	0.0	9.90	690.8	5.88	154.2	9.80	667.5	2.54 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	698.4	0.0	8.8	20.8	-0.56	0.47	0.1	0.1	5784.8	4
June 29, 20		669.7	0.00	0.0	9.90	689.6	6.63	180.2	9.80	667.0	2.95 4.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	692.1	0.0	13.2	21.9	-0.56	0.45	0.1	0.0	6341.4	1
June 30, 20	24 9.50	670.1	0.00	0.0	9.90	689.6	7.31	255.2	9.79	666.6	3.28 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	686.1	0.0	16.3	21.2	-0.55	0.46	0.1	0.0	3861.1	
					1 1				T T			1			1				1											
Avg	9.50		0.00	0.0	9.86	683.4	7.75	454.6	9.81	666.2	2.07 2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	671.7	4.8	10.1	19.5	-0.53	0.45	0.1	8.1	2941.9	N/A
Min	9.47	669.3	0.00	0.0	9.50	649.8	4.06	0.0	9.77	650.4	0.10 0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.3	647.9	0.0	0.0	10.3	-0.57	0.22	0.0	0.0	49.4	N/A
Max	9.53	687.3	0.02	0.3	10.02	704.1	16.15	2246.7	9.96	669.3	3.28 35.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	698.4	7.3	22.1	22.3	-0.24	0.50	0.1	44.0	7608.8	N/A

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report July 2024

Date		Sc	crubber 1 - East			Scrubbe	er 4 - Fermenter			Scr	ubber 2 - West			Scrub	bber 3 - EPT			Scrul	bber 5			Scr	ubber 6			GRF Scru	ibber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pH	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pH	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H₂S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
July 1, 2024	9.49	670.1	0.02	0.0	9.90	690.2	8.00	259.3	9.80	666.1	3.05	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	689.9	0.0	15.1	20.7	-0.55	0.46	0.1	0.0	452.6	
July 2, 2024	9.51	669.8	0.00	0.0	9.84	690.4	9.36	727.0	9.80	666.7	3.28	7.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	694.9	0.0	15.3	20.9	-0.56	0.45	0.1	0.1	501.7	
July 3, 2024	9.50	671.1	0.00	0.0	9.89	690.9	7.24	395.9	9.81	670.1	0.84	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	674.9	2.0	13.2	20.6	-0.55	0.43	0.1	1.4	188.7	
July 4, 2024	9.49	669.2	0.00	0.0	9.90	689.0	4.73	38.9	9.80	668.2	1.30	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	672.7	3.4	16.2	21.3	-0.56	0.47	0.1	0.0	697.2	
July 5, 2024	9.50	669.7	0.00	0.0	9.90	689.9	6.09	102.3	9.80	667.7	2.16	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.7	3.9	19.2	22.2	-0.56	0.46	0.1	0.0	2338.6	
July 6, 2024	9.50	670.0	0.00	0.0	9.90	689.8	6.43	113.6	9.80	667.4	2.40	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	678.8	4.9	20.5	22.1	-0.56	0.45	0.1	0.0	3441.4	
July 7, 2024	9.51	669.9	0.00	0.0	9.90	689.8	7.11	152.7	9.80	667.4	2.12	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	674.3	4.2	22.0	23.0	-0.56	0.45	0.1	0.0	1800.5	
July 8, 2024	9.47	673.0	0.00	0.0	9.89	689.0	8.42	155.2	9.74	670.0	3.37	0.0	N/A	N/A	N/A	N/A	9.2	688.3	0.0	11.2	9.5	652.9	4.5	21.3	24.9	-0.56	0.44	0.1	0.0	4058.1	
July 9, 2024	9.49	669.5	0.00	0.0	9.84	689.5	7.98	148.1	9.77	666.6	3.96	0.0	N/A	N/A	N/A	N/A	9.5	673.6	2.6	0.0	N/A	N/A	N/A	N/A	25.7	-0.56	0.44	0.1	0.0	5716.7	
July 10, 2024	9.47	670.7	0.00	0.0	9.89	689.3	8.59	42.2	9.80	666.7	3.86	0.0	N/A	N/A	N/A	N/A	9.5	662.6	3.9	0.2	N/A	N/A	N/A	N/A	27.2	-0.56	0.44	0.1	0.0	4439.9	
July 11, 2024	9.53	669.8	0.00	0.0	9.88	690.8	9.30	0.0	9.81	665.7	4.07	0.0	N/A	N/A	N/A	N/A	9.5	669.6	4.3	0.1	N/A	N/A	N/A	N/A	25.4	-0.56	0.44	0.1	0.0	5515.5	
July 12, 2024	9.50	669.7	0.00	0.0	9.90	689.7	9.85	0.0	9.80	666.6	3.99	0.0	N/A	N/A	N/A	N/A	9.5	669.8	4.2	0.0	N/A	N/A	N/A	N/A	22.0	-0.56	0.46	0.1	0.0	7903.8	
July 13, 2024	9.50	669.7	0.00	0.0	9.90	689.7	9.94	0.0	9.80	665.5	4.57	6.8	N/A	N/A	N/A	N/A	9.5	670.1	5.0	0.0	N/A	N/A	N/A	N/A	21.1	-0.55	0.46	0.1	0.0	10654.8	
July 14, 2024	9.50	670.7	0.00	0.0	9.91	691.1	8.99	0.0	9.80	665.4	3.76	0.0	N/A	N/A	N/A	N/A	9.5	670.1	4.1	0.0	N/A	N/A	N/A	N/A	21.3	-0.55	0.47	0.1	0.0	6642.3	
July 15, 2024	9.49	671.8	0.00	0.0	9.89	689.1	9.19	33.9	9.79	664.4	4.98	5.6	N/A	N/A	N/A	N/A	9.5	669.8	4.7	0.0	N/A	N/A	N/A	N/A	22.7	-0.55	0.46	0.1	110.5	5526.5	
July 16, 2024	9.49	669.8	0.43	167.0	9.90	689.7	9.61	732.8	9.85	666.0	4.47	337.7	N/A	N/A	N/A	N/A	9.5	670.3	6.6	7.1	9.4	652.4	0.0	34.5	24.5	-0.58	0.44	0.0	0.0	1358.5	Out of Service
July 17, 2024	9.50	668.9	0.00	0.0	9.90	689.4	10.44	72.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.4	7.0	6.4	9.5	670.4	5.0	30.0	25.6	-0.56	0.45	0.1	0.0	1512.2	
July 18, 2024		670.4	0.02	0.0	9.90	689.9	11.18	81.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.2	9.0	9.6	9.5	667.8	9.0	28.8	26.4	-0.53	0.45	0.1	0.0	1664.4	
July 19, 2024		669.9	0.00	0.0	9.90	690.5	10.40	52.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	7.8	0.0	9.5	673.3	7.9	29.6	25.6	-0.56	0.44	0.1	0.0	1660.7	
July 20, 2024		670.3	0.00	0.0	9.90	689.0	11.61	39.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	7.8	0.0	9.5	672.8	8.0	31.3	25.0	-0.56	0.45	0.1	0.0	1546.2	
July 21, 2024		669.6	0.00	0.0	9.89	689.5	11.43	0.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.7	7.4	0.0	9.5	673.0	7.6	31.9	26.4	-0.56	0.44	0.1	0.0	1795.4	
July 22, 2024		669.8	0.00	0.0	9.91	690.1	10.78	3.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	6.5	0.0	9.5	679.1	6.5	32.1	27.1	-0.56	0.44	0.1	0.0	1318.1	
July 23, 2024		670.0	0.00	0.0	9.90	689.7	10.49	5.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	7.9	0.0	9.5	668.2	7.8	29.9	25.0	-0.56	0.45	0.1	0.1	1387.8	
July 24, 2024		0.12.0	0.00	0.0	9.85	687.9	10.30	3.2	N/A		N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.0	7.8	0.0	9.5	666.7	7.9	21.5	21.8	-0.55	0.46	0.1	0.8	495.5	
July 25, 2024	9.51	670.7	0.00	0.0	9.87	681.8	11.45	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.6	10.5	0.0	9.4	671.7	10.7	8.1	20.3	-0.53	0.45	0.1	46.9	1044.2	
July 26, 2024		670.3	0.00	0.0	9.90	693.7	10.32	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	670.7	8.0	0.0	9.6	670.1	8.3	2.5	20.9	-0.53	0.44	0.1	6.2	433.4	
July 27, 2024	9.49	669.8	0.00	0.0	9.92	695.3	9.31	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.7	6.6	0.0	9.5	670.3	6.8	6.2	21.0	-0.54	0.46	0.1	2.1	215.3	
July 28, 2024		669.8	0.00	0.0	9.90	690.9	8.76	1.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.6	6.9	0.0	9.5	669.5	7.0	16.4	21.3	-0.53	0.46	0.1	0.5	273.4	
July 29, 2024	9.51	669.9	0.00	0.0	9.90	687.3	9.71	0.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	6.6	0.0	9.5	670.2	6.6	19.4	22.2	-0.53	0.45	0.1	8.6	175.2	
July 30, 2024		671.9	0.00	0.0	9.92	681.7	9.21	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.5	6.8	0.0	9.5	669.3	6.8	15.7	21.6	-0.53	0.46	0.1	6.8	453.1	
July 31, 2024	9.52	670.7	0.00	0.0	9.90	685.9	9.06	188.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	7.0	0.0	9.5	670.3	7.0	18.7	22.6	-0.54	0.46	0.1	3.7	249.2	
A	0.50	670.0	0.03		0.00	C00.4	0.20	100.4	0.00	555.0	2.20	22.6	21/2	21/2	21/2	21/2	0.5	670.6		1 44	0.5	674.0		30.0	23.2	0.55	0.45	1 04		2424.2	
Avg	0.00	670.3	0.02	5.4	9.89	689.4	9.20	108.1	9.80	666.9	3.26	22.6	N/A	N/A	N/A	N/A	9.5	670.6	6.2	1.4	9.5	671.8	5.7	20.8	EU.E	-0.55	0.45	0.1	6.1	2434.2	N/A
Min	9.47	668.9	0.00	0.0	9.84	681.7	4.73	0.0	9.74	664.4	0.84	0.0	N/A	N/A	N/A	N/A	9.2	662.6	0.0	0.0	9.4	652.4	0.0	2.5	20.3	-0.58	0.43	0.0	0.0	175.2	N/A
Max	9.53	673.0	0.43	167.0	9.92	695.3	11.61	732.8	9.85	670.1	4.98	337.7	N/A	N/A	N/A	N/A	9.6	688.3	10.5	11.2	9.6	694.9	10.7	34.5	27.2	-0.53	0.47	0.1	110.5	10654.8	N/A

Indicates data for partial day

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report August 2024

Date	Sc	crubber 1 - East			Scrubb	er 4 - Fermenter			Sc	rubber 2 - West			Sc	rubber 3 - EPT			Scru	bber 5			Scru	ıbber 6			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
pl	H ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pH	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
August 1, 2024 9.5	670.3	0.00	0.0	9.88	685.8	8.50	17.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.3	7.0	0.0	9.5	670.2	7.0	12.4	22.3	-0.54	0.46	0.1	14.8	339.0	
August 2, 2024 9.5	669.8	0.00	0.0	9.90	687.7	7.67	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.9	6.8	0.0	9.5	669.9	6.8	12.0	22.1	-0.54	0.45	0.1	0.0	221.6	
August 3, 2024 9.5	670.3	0.00	0.0	9.94	699.8	8.99	39.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.8	7.2	0.0	9.5	670.9	7.3	10.5	22.5	-0.54	0.45	0.1	0.0	294.9	
August 4, 2024 9.5	669.8	0.00	0.0	9.86	680.2	10.02	200.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	665.3	7.0	0.0	9.5	664.1	7.1	8.4	21.0	-0.53	0.46	0.1	0.6	169.4	
August 5, 2024 9.5	670.1	0.00	0.0	9.93	690.2	8.36	4.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	682.7	3.0	0.0	9.6	676.3	3.3	3.5	20.5	-0.53	0.45	0.2	0.0	57.1	
August 6, 2024 9.5	673.1	0.00	0.0	9.90	696.9	6.98	192.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.2	6.2	0.0	9.5	669.7	6.3	3.4	20.8	-0.53	0.47	0.1	0.0	247.1	
August 7, 2024 9.4	8 662.1	0.00	0.0	9.89	689.4	9.37	379.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	5.5	0.0	9.5	670.2	5.6	6.4	20.8	-0.54	0.47	0.1	0.0	802.0	
August 8, 2024 9.5	670.0	0.00	0.0	9.88	690.5	8.40	292.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	5.7	0.0	9.5	670.0	5.7	6.8	21.2	-0.53	0.46	0.1	0.0	931.9	
August 9, 2024 9.5	670.1	0.00	0.0	9.90	690.1	9.62	189.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	5.9	0.0	9.5	670.1	6.0	7.1	21.5	-0.54	0.46	0.1	0.0	1080.1	
August 10, 2024 9.5	670.0	0.00	0.0	9.89	690.2	9.91	200.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	5.9	0.0	9.5	670.1	6.0	7.5	22.2	-0.55	0.45	0.1	0.0	548.2	
August 11, 2024 9.5	669.9	0.00	0.0	9.90	689.7	10.00	178.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.9	6.2	0.0	9.5	669.9	6.2	8.5	22.7	-0.55	0.45	0.1	0.0	585.5	
August 12, 2024 9.5	670.0	0.00	0.0	9.90	689.7	11.30	238.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	6.3	0.0	9.5	669.7	6.3	7.8	23.0	-0.55	0.45	0.1	0.0	1102.9	
August 13, 2024 9.4	9 670.1	0.00	0.0	9.90	690.4	10.98	231.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.5	7.9	0.0	9.5	669.7	8.0	7.0	21.8	-0.52	0.45	0.1	0.0	1135.1	
August 14, 2024 9.5	669.7	0.00	0.0	9.90	689.4	9.96	92.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	668.5	7.2	0.0	9.5	668.4	7.2	10.1	21.4	-0.54	0.46	0.1	0.2	1668.9	
August 15, 2024 9.5	670.2	0.00	0.0	9.90	691.0	10.51	158.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	666.6	10.6	0.0	9.5	665.6	10.6	12.2	21.8	-0.53	0.46	0.1	0.6	1940.3	
August 16, 2024 9.4	19 669.9	0.00	0.0	9.91	690.2	8.76	266.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	674.7	4.7	0.0	9.6	675.5	4.7	1.8	20.3	-0.53	0.45	0.1	0.0	660.8	Out of Service
August 17, 2024 9.5	670.2	0.00	0.0	9.90	689.6	9.01	173.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	6.5	0.0	9.5	670.1	6.4	3.2	20.5	-0.53	0.46	0.1	0.1	1253.7	
August 18, 2024 9.5	669.8	0.00	0.0	9.90	689.7	9.40	141.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.3	7.2	0.0	9.5	669.1	7.2	8.3	21.3	-0.53	0.46	0.1	0.3	531.9	
August 19, 2024 9.5	669.7	0.00	0.0	9.89	689.7	11.12	166.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	667.0	8.7	0.0	9.4	665.9	8.5	12.7	21.6	-0.53	0.47	0.1	1.8	554.3	
August 20, 2024 9.5	674.3	0.02	0.0	9.88	687.2	12.25	159.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	675.3	5.5	0.0	9.5	673.6	5.5	14.6	22.3	-0.54	0.45	0.0	0.7	395.9	
August 21, 2024 9.5	669.8	0.00	0.0	9.89	687.9	14.18	32.7	9.60	659.1	2.48	0.0	N/A	N/A	N/A	N/A	9.5	664.8	6.6	1.1	9.5	666.8	6.9	8.0	21.2	-0.53	0.45	0.1	2.0	241.8	
August 22, 2024 9.5	670.1	0.00	0.0	9.93	673.7	14.03	165.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.7	7.1	0.0	9.5	669.7	7.1	1.7	20.6	-0.52	0.46	0.1	4.4	217.1	
August 23, 2024 9.5	670.0	0.00	0.0	9.88	686.9	13.73	151.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	8.0	0.0	9.5	669.8	7.9	6.9	22.8	-0.53	0.44	0.1	0.0	293.3	
August 24, 2024 9.5	670.0	0.00	0.0	9.92	690.4	13.12	38.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	668.7	8.5	0.0	9.5	667.9	8.5	5.2	20.5	-0.52	0.44	0.1	0.0	407.0	
August 25, 2024 9.5	670.0	0.00	0.0	9.90	690.1	10.47	35.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	675.4	5.6	0.0	9.5	672.5	5.7	1.7	21.1	-0.54	0.47	0.1	0.0	207.5	
August 26, 2024 9.5	670.2	0.00	0.0	9.90	688.6	10.70	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	6.4	0.0	9.5	670.2	6.4	4.9	21.6	-0.55	0.46	0.1	1.0	202.8	
August 27, 2024 9.5	671.5	0.00	0.0	9.86	690.1	11.91	243.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	666.0	7.9	0.0	9.5	665.4	7.9	1.1	20.7	-0.54	0.45	0.1	1.1	248.4	
August 28, 2024 9.5	670.2	0.00	0.0	9.89	687.3	12.91	97.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	674.3	9.6	0.0	9.4	674.4	9.8	0.0	21.1	-0.54	0.42	0.1	3.6	189.4	
August 29, 2024 9.5	669.7	0.00	0.0	9.90	690.8	11.01	0.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	669.5	6.8	0.0	9.6	669.7	6.8	2.1	21.6	-0.55	0.46	0.1	1.9	458.2	
August 30, 2024 9.5	670.2	0.00	0.0	9.94	684.2	11.09	60.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	8.2	0.0	9.5	670.0	8.2	0.2	21.1	-0.54	0.46	0.1	0.0	734.1	
August 31, 2024 9.4	9 670.1	0.00	0.0	9.87	640.6	12.22	1461.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	7.8	0.0	9.5	670.3	7.7	2.3	21.2	-0.55	0.46	0.1	0.1	630.3	
																									_			1		
Avg 9.5		0.00	0.0	9.90	687.4	10.53	180.9	9.60	659.1	2.48	0.0	N/A	N/A	N/A	N/A	9.5	670.3	6.9	0.0	9.5	669.9	6.9	6.4	21.5	-0.54	0.46	0.1	1.1	592.0	N/A
Min 9.4		0.00	0.0	9.86	640.6	6.98	0.0	9.60	659.1	2.48	0.0	N/A	N/A	N/A	N/A	9.4	664.8	3.0	0.0	9.4	664.1	3.3	0.0	20.3	-0.55	0.42	0.0	0.0	57.1	N/A
Max 9.5	674.3	0.02	0.0	9.94	699.8	14.18	1461.0	9.60	659.1	2.48	0.0	N/A	N/A	N/A	N/A	9.6	682.7	10.6	1.1	9.6	676.3	10.6	14.6	23.0	-0.52	0.47	0.2	14.8	1940.3	N/A

Indicates data for partial day

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report September 2024

D. I.		Scrubber 1 - East			Sci	rubber 4 - Fermente	er		Scrub	ber 2 - West			Scrubb	er 3 - EPT			Scrub	ber 5			Scrul	bber 6			GRF Scru	ıbber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pH ORP (n	nV) H ₂ S In (ppm)	H₂S Out ((ppb)	pH ORP (mV) H ₂ S In (ppm)	H ₂ S Out (ppb)) pH	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pH (ORP (mV) H2	S In (ppm) H	12S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H ₂ S Out (ppb)	H ₂ S Out (ppb)
September 1, 2024	9.50 669.	B 0.00	0.0	9	9.89 689.6	12.55	303.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.4	6.6	0.0	9.5	670.5	6.5	6.3	22.2	-0.55	0.45	0.1	0.0	547.4	
September 2, 2024	9.50 670.	1 0.00	0.0	9	9.90 689.9	11.13	78.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	667.1	6.7	0.0	9.5	666.5	6.8	7.0	22.9	-0.56	0.45	0.1	0.0	824.5	
September 3, 2024	9.50 670.	0.00	0.0	9	9.91 689.9	11.12	14.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	672.5	7.2	0.2	9.4	672.9	7.3	2.2	21.1	-0.55	0.46	0.1	0.0	1105.9	
September 4, 2024	9.50 672.	3 0.00	0.0	9	9.90 693.5	10.56	6.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.6	7.7	0.0	9.5	669.3	7.7	0.0	20.7	-0.54	0.46	0.1	0.1	1767.5	
September 5, 2024	9.50 669.	6 0.00	0.0	9	9.90 690.8	10.42	20.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	7.2	0.0	9.5	669.9	7.2	0.3	21.7	-0.55	0.45	0.1	0.0	860.7	
September 6, 2024	9.48 669.	6 0.00	0.0	9	9.90 689.3	10.68	4.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.4	7.7	0.0	9.5	670.5	7.7	4.0	22.3	-0.56	0.45	0.1	0.0	241.1	
September 7, 2024	9.51 670.	4 0.00	0.0	9	9.89 689.2	10.46	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	8.2	0.0	9.5	669.8	8.2	5.0	22.3	-0.55	0.45	0.1	0.0	398.0	
September 8, 2024	9.50 669.	5 0.00	0.0	9	9.89 688.9	12.01	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	7.6	0.0	9.5	670.0	7.6	3.4	22.7	-0.44	0.93	0.1	0.0	338.3	
September 9, 2024	9.52 671.	2 0.00	0.0	9	9.91 690.0	12.11	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	669.8	6.6	0.0	9.6	670.0	6.7	0.0	20.8	-0.37	1.23	0.1	0.0	415.1	
September 10, 2024	9.49 669.	4 0.00	0.0	9	9.90 690.9	10.42	0.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	9.0	0.0	9.5	669.8	9.1	0.0	21.1	-0.35	1.24	0.1	0.0	878.4	
September 11, 2024	9.50 670.	1 0.00	0.0	9	9.90 688.6	11.12	4.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	8.6	0.0	9.5	670.1	8.7	0.0	20.7	-0.35	1.23	0.1	0.0	448.0	
September 12, 2024	9.50 669.	9 0.00	0.0	9	9.90 690.3	10.74	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	671.1	8.0	0.0	9.5	670.3	8.2	0.0	20.9	-0.35	1.18	0.1	0.8	156.6	
September 13, 2024	9.50 670.	0.00	0.0	9	9.90 693.9	8.74	0.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	7.9	0.0	9.5	669.6	8.0	0.0	21.1	-0.34	1.23	0.1	0.0	450.5	
September 14, 2024	9.50 669.	9 0.00	0.0	9	9.91 689.8	9.45	18.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	666.2	9.5	0.0	9.5	664.6	9.7	0.0	21.0	-0.35	1.21	0.1	0.9	267.4	
September 15, 2024	9.50 670.	1 0.00	0.0	9	9.89 689.3	10.27	45.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.9	8.6	0.0	9.5	671.5	8.7	0.0	21.1	-0.35	1.29	0.1	0.0	158.1	Out of Service
September 16, 2024	9.50 670.	0.00	0.0	9	9.90 689.9	14.29	153.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	672.2	8.0	0.0	9.5	673.0	8.0	0.0	20.9	-0.30	1.13	0.1	0.0	216.4	Out of service
September 17, 2024	9.50 669.	9 0.00	0.0	9	9.90 689.7	24.78	56.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.3	8.5	0.0	9.5	670.2	8.6	0.0	21.3	-0.35	1.22	0.1	0.6	333.1	
September 18, 2024	9.50 670.	1 0.00	0.0	9	9.90 689.4	30.06	61.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.9	8.6	0.0	9.5	669.7	8.6	0.0	21.0	-0.35	1.22	0.1	5.9	301.0	
September 19, 2024	9.49 671.	3 0.00	0.0	9	9.91 694.9	36.43	209.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	673.3	9.0	0.0	9.5	669.4	9.2	0.0	21.0	-0.35	1.22	0.1	1.4	370.0	
September 20, 2024	9.50 670.	6 0.00	0.0	9	9.91 691.1	37.02	663.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.4	8.2	0.0	9.5	670.6	8.2	0.0	21.2	-0.34	1.23	0.1	1.5	305.1	
September 21, 2024	9.50 669.	7 0.00	0.0	9	9.90 689.6	35.57	1128.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	8.1	0.0	9.5	670.2	8.2	0.0	21.1	-0.35	1.24	0.1	0.0	327.7	
September 22, 2024	9.49 669.	7 0.01	0.0	9	9.89 689.9	38.85	1181.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	666.2	10.7	0.4	9.4	664.1	11.0	0.0	21.0	-0.35	1.23	0.1	0.1	211.9	
September 23, 2024	9.50 669.	8 0.00	0.0	9	9.90 689.6	40.06	1081.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	673.6	8.7	1.0	9.6	675.1	8.8	0.0	20.7	-0.35	1.27	0.1	2.3	272.0	
September 24, 2024	9.50 670.	2 0.00	0.0	9	9.90 689.8	37.52	672.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	8.6	0.0	9.5	670.1	8.7	0.0	21.5	-0.36	1.23	0.1	4.2	616.0	
September 25, 2024	9.50 670.	0.00	0.0	9	9.89 688.2	41.40	752.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	8.9	0.0	9.5	669.7	9.1	0.0	20.9	-0.35	1.22	0.1	0.1	599.3	
September 26, 2024	9.51 670.	4 0.00	0.0	9	9.92 694.1	29.19	148.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	671.6	7.6	0.5	9.5	674.1	7.9	0.0	20.7	-0.34	1.20	0.1	0.4	457.5	
September 27, 2024	9.50 669.	7 0.00	0.0	9	9.90 688.8	26.44	259.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.4	7.7	0.0	9.5	669.9	8.0	0.0	20.9	-0.35	1.22	0.1	0.0	1016.0	
September 28, 2024	9.50 670.	4 0.00	0.0	9	9.90 689.6	29.54	463.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	7.8	0.0	9.5	670.2	8.1	0.0	21.2	-0.35	1.24	0.1	0.0	991.8	
September 29, 2024	9.50 669.	7 0.00	0.0	9	9.90 689.8	31.09	551.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.6	5.0	0.0	9.5	670.7	5.2	0.0	21.3	-0.34	1.24	0.1	2.6	257.2	
September 30, 2024	9.50 670.	0.00	0.0	9	9.90 689.9	34.35	859.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	5.7	0.0	9.5	670.1	5.8	0.0	21.7	-0.34	1.24	0.1	0.0	134.2	
		•	-	'	•	•	•				'				'				'		•	•		•			'		•	
Avg	9.50 670.	1 0.00	0.0	9	9.90 690.3	21.61	291.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	7.9	0.1	9.5	670.1	8.0	0.9	21.3	-0.40	1.03	0.1	0.7	508.9	N/A
Min	9.48 669.	4 0.00	0.0	9	9.89 688.2	8.74	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.4	666.2	5.0	0.0	9.4	664.1	5.2	0.0	20.7	-0.56	0.45	0.1	0.0	134.2	N/A
Max	9.52 672.	3 0.01	0.0	9	9.92 694.9	41.40	1181.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6	673.6	10.7	1.0	9.6	675.1	11.0	7.0	22.9	-0.30	1.29	0.1	5.9	1767.5	N/A

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report October 2024

Date		Scru	ubber 1 - East		Scru	ubber 4 - Fermente	r		Scrubber 2	! - West			Scru	bber 3 - EPT			Scrub	ber 5			Scru	bber 6			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pH (ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pH ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV) H ₂ S I	n (ppm) H ₂	₂S Out (ppb)	pH O	RP (mV)	H2S In (ppm)	H2S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pH	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H₂S Out (ppb)	H₂S Out (ppb)
October 1, 2024	9.50	670.1	0.00	0.0	9.90 688.8	40.07	1002.9	N/A	N/A 1	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.2	6.7	0.0	9.5	668.9	6.9	0.0	21.6	-0.33	1.24	0.1	19.7	215.4	
October 2, 2024	9.50	670.6	0.00	0.0	9.96 677.1	36.26	630.1	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.9	7.9	0.0	9.5	668.4	8.0	0.0	21.6	-0.34	1.24	0.1	80.1	1027.9	
October 3, 2024	9.50	670.4	0.00	0.0	9.89 692.4	36.24	54.2	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	666.9	9.2	0.0	9.5	665.1	9.8	0.0	21.7	-0.34	1.25	0.1	21.6	493.0	
October 4, 2024	9.50	670.1	0.00	0.0	9.93 688.6	33.81	47.8	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	673.2	8.8	0.0	9.5	674.4	9.1	0.0	21.3	-0.33	1.23	0.1	1.9	393.7	
October 5, 2024	9.50	669.7	0.00	0.0	9.88 667.7	31.38	297.6	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	7.8	0.0	9.5	670.3	8.1	0.0	21.8	-0.33	1.24	0.1	0.1	308.6	
October 6, 2024	9.49	669.9	0.00	0.0	9.91 679.9	31.48	368.9	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.7	6.7	0.0	9.5	669.7	6.8	0.0	21.3	-0.34	1.25	0.1	0.4	143.4	
October 7, 2024	9.49	670.2	0.00	0.0	9.75 689.5	32.98	2175.5	N/A	N/A I	V/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	7.4	0.0	9.5	669.9	7.6	0.0	21.3	-0.33	1.25	0.1	1.2	98.4	
October 8, 2024	9.47	671.4	0.00	0.0	9.82 679.5	33.29	2418.8	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	8.1	0.0	9.5	669.7	8.3	0.0	21.1	-0.34	1.24	0.1	0.5	141.1	
October 9, 2024	9.51	671.7	0.00	0.0	9.79 679.7	36.03	3347.2	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.9	7.9	0.0	9.5	670.1	8.1	0.0	21.6	-0.33	1.17	0.1	0.0	128.4	
October 10, 2024	9.50	670.2	0.00	0.0	9.80 680.0	29.98	2368.0	N/A	N/A I	V/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	8.0	0.0	9.5	669.7	8.1	0.0	21.7	-0.33	1.24	0.2	7.9	85.3	
October 11, 2024	9.50	670.0	0.00	0.0	9.78 684.2	30.35	1573.8	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	8.3	0.0	9.5	669.9	8.4	0.0	21.6	-0.34	1.25	0.1	2.9	63.8	
October 12, 2024	9.50	670.0	0.00	0.0	9.80 689.3	33.06	1108.1	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.6	8.0	0.0	9.5	670.7	8.2	0.0	21.7	-0.34	1.26	0.1	13.0	41.2	
October 13, 2024	9.50	669.5	0.00	0.0	9.80 688.8	37.76	1175.3	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.0	7.8	0.2	9.5	668.9	7.9	0.0	21.4	-0.34	1.25	0.1	0.0	32.7	
October 14, 2024	9.49	670.3	0.00	0.0	9.79 689.8	38.61	1022.0	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.5	7.9	0.2	9.5	670.6	8.2	0.0	21.5	-0.33	1.25	0.1	0.2	60.3	
October 15, 2024	9.54	671.3	0.51	0.0	9.88 692.0	39.14	905.8	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	671.2	8.6	0.0	9.5	669.6	8.7	0.0	21.5	-0.34	1.25	0.1	0.0	34.7	
October 16, 2024		670.2	1.25	211.8	9.95 677.3	41.37	2452.0	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	9.2	0.0	9.5	670.3	9.5	0.0	21.5	-0.33	1.24	0.1	0.4	431.3	Out of Service
October 17, 2024	9.50	670.0	0.00	0.0	9.97 684.3	25.80	926.3	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	9.1	0.0	9.5	670.1	9.3	0.0	19.7	-0.34	1.24	0.1	196.6	946.8	
October 18, 2024	9.50	670.0	0.00	0.0	9.89 685.3	33.31	1397.1	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.3	9.4	0.0	9.5	670.3	9.5	0.0	9.7	-0.35	1.28	0.1	0.0	841.0	
October 19, 2024	9.50	670.2	0.00	0.0	9.94 699.7	32.07	325.8	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.2	8.1	0.0	9.5	670.3	8.2	0.0	15.1	-0.34	1.14	0.1	6.0	1499.7	
October 20, 2024	9.50	670.2	0.00	0.0	9.92 659.6	38.80	2734.4	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	668.2	9.0	0.0	9.5	667.6	9.2	0.0	22.2	-0.34	1.24	0.1	4.0	873.3	
October 21, 2024	9.50	670.0	0.00	0.0	10.00 681.7	35.87	2434.7	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.6	671.9	7.1	0.0	9.6	672.6	7.3	0.0	22.4	-0.33	1.24	0.1	0.0	683.9	
October 22, 2024	9.50	670.1	0.00	0.0	9.91 683.3	36.72	2854.6	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	7.2	0.0	9.5	670.1	7.3	0.0	22.0	-0.33	1.25	0.1	0.0	3773.7	
October 23, 2024	9.50	669.9	0.00	0.0	9.95 690.5	31.33	1706.8	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.3	7.1	0.0	9.5	670.3	7.1	0.0	21.8	-0.33	1.25	0.1	0.8	4030.7	
October 24, 2024	9.50	673.9	0.00	0.0	9.91 691.7	34.41	1876.6	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	6.0	0.0	9.5	670.2	6.1	0.0	21.8	-0.33	1.24	0.0	0.5	3157.4	
October 25, 2024	9.50	671.9	0.00	0.0	9.81 691.1	28.80	1722.8	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	6.8	0.0	9.5	669.6	6.9	0.0	21.7	-0.33	1.25	0.1	0.0	4906.7	
October 26, 2024	9.50	672.4	0.00	0.0	10.00 655.1	27.78	3346.6	N/A		N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.0	6.8	0.0	9.5	670.0	6.9	0.0	21.7	-0.33	1.25	0.1	0.0	5493.8	
October 27, 2024	9.50	714.2	0.00	0.0	9.92 671.1	31.76	3970.1	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.5	5.2	0.0	9.5	670.7	5.4	0.0	21.8	-0.32	1.23	0.1	5.3	3647.3	
October 28, 2024	9.50	671.3	0.00	0.0	9.99 657.4	28.31	3798.7	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.7	5.6	0.0	9.5	669.6	5.6	0.0	21.8	-0.32	1.24	0.1	1.8	3861.5	
October 29, 2024	9.28	696.6	0.00	0.0	9.91 681.4	26.81	2268.3	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	670.1	6.7	0.0	9.5	670.2	6.7	0.0	21.7	-0.32	1.25	0.1	1.2	5046.0	
October 30, 2024	9.49	676.5	0.00	0.0	9.77 668.9	28.12	6380.9	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	631.2	5.2	0.0	9.5	671.1	5.2	0.0	21.9	-0.32	1.25	0.1	0.4	3611.4	
October 31, 2024	9.50	673.7	0.00	0.0	9.61 671.2	33.03	7301.1	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.5	669.8	5.2	0.0	9.5	669.9	5.2	0.0	22.0	-0.32	1.25	0.1	0.0	1950.8	
Avg		673.1	0.06	6.8	9.87 681.2	33.38	2064.3	N/A	-	N/A	N/A		N/A	N/A	N/A	9.5	668.8	7.5	0.0	9.5	670.0	7.7	0.0	21.0	-0.33	1.24	0.1	11.8	1549.1	N/A
Min	0.20	669.5	0.00	0.0	9.61 655.1	25.80	47.8	N/A		V/A	N/A		N/A	N/A	N/A	9.5	631.2	5.2	0.0	9.5	665.1	5.2	0.0	9.7	-0.35	1.14	0.0	0.0	32.7	N/A
Max	9.54	714.2	1.25	211.8	10.00 699.7	41.37	7301.1	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	N/A	9.6	673.2	9.4	0.2	9.6	674.4	9.8	0.0	22.4	-0.32	1.28	0.2	196.6	5493.8	N/A

Gold Bar Wastewater Treatment Plan Daily Average Scrubber Report November 2024

Dete		Scrubber 1	- East			Scrub	ber 4 - Fermenter			Scru	ubber 2 - West			Scrubber 3	- EPT			Sc	rubber 5			Scrul	ober 6			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pH ORP	(mV) H ₂ S In	(ppm) H	l₂S Out (ppb)	pH (ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm)	H ₂ S Out (ppb)	pH ORP	mV) H2S In	(ppm) H	2S Out (ppb)	pH	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H₂S Out (ppb)	H₂S Out (ppb)
November 1, 2024	9.51 67	5.9 0.	00	0.0	9.90	692.6	32.93	844.9	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.3	4.9	0.0	9.5	670.3	4.9	0.0	21.8	-0.32	1.24	0.1	0.0	941.3	
November 2, 2024	9.50 67	0.0 0.	00	0.0	10.00	658.1	33.29	2049.7	N/A	N/A	N/A	N/A	N/A N/	A N	Ά.	N/A	9.5	670.0	4.1	0.0	9.5	669.9	4.2	0.0	22.0	-0.32	1.24	0.1	0.0	643.1	7
November 3, 2024	9.50 66	9.8 0.	00	0.0	9.88	661.1	28.83	2034.4	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.0	4.7	0.0	9.5	670.0	4.7	0.0	22.0	-0.32	1.25	0.1	0.0	494.6	7
November 4, 2024	9.50 67	0.0 0.	00	0.0	9.95	655.1	27.04	1862.8	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	669.9	5.4	0.0	9.5	669.8	5.5	0.0	22.0	-0.32	1.24	0.1	0.0	541.1	
November 5, 2024	9.50 66	9.9 0.	00	0.0	9.96	684.9	25.94	471.0	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.4	4.9	0.0	9.5	670.4	5.0	0.0	21.9	-0.32	1.19	0.1	0.0	273.9	
November 6, 2024	9.50 67	0.2 0.	00	0.0	9.98	672.8	20.45	587.5	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.1	4.2	0.0	9.5	670.0	4.3	0.0	21.6	-0.33	1.25	0.1	1.9	405.1	
November 7, 2024	9.49 66	9.9 0.	00	0.0	9.94	657.7	34.64	2273.3	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.1	4.5	0.0	9.5	670.0	4.5	0.0	21.4	-0.34	1.24	0.1	0.0	415.6	
November 8, 2024	9.50 67	0.0 0.	00	0.0	9.97	655.7	30.83	2069.7	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.4	5.1	0.0	9.5	670.2	5.2	0.0	21.4	-0.32	1.25	0.1	5.2	378.9	
November 9, 2024	9.50 67	0.1 0.	00	0.0	9.91	676.3	29.80	1357.8	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.0	4.7	0.0	9.5	669.9	4.8	0.0	21.9	-0.32	1.25	0.1	0.0	352.5	
November 10, 2024	9.51 67	0.0 0.	00	0.0	9.95	674.4	29.70	681.0	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.1	4.1	0.0	9.5	670.1	4.3	0.0	21.8	-0.32	1.25	0.1	0.1	308.2	
November 11, 2024	9.50 66	9.9 0.	00	0.0	9.97	661.0	29.78	599.7	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	669.9	3.8	0.0	9.5	670.0	4.0	0.0	21.6	-0.31	1.24	0.1	0.0	194.4	
November 12, 2024	9.49 67	8.7 0.	00	0.0	9.95	685.9	29.37	607.0	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	669.9	4.0	0.0	9.5	669.8	4.1	0.0	21.8	-0.32	1.23	0.1	4.4	440.9	
November 13, 2024	9.51 68	4.6 0.	00	0.0	10.00	678.1	28.46	901.9	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.7	4.6	0.0	9.5	673.1	4.8	0.0	21.8	-0.31	1.23	0.1	0.2	585.1	
November 14, 2024	9.50 67	1.8 0.	00	0.0	9.90	681.8	28.34	947.6	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.3	4.0	0.0	9.5	670.4	4.3	0.0	21.9	-0.31	1.24	0.1	1.6	204.5	
November 15, 2024	9.50 67	0.4 0.	00	0.0	9.93	664.7	27.58	1141.5	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.2	4.0	0.0	9.5	670.2	4.2	0.0	21.8	-0.31	0.95	0.1	1.6	305.2	Out of Service
November 16, 2024	9.51 67	0.0 0.	00	0.0	9.99	672.7	26.23	509.9	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	669.5	4.1	0.0	9.5	669.3	4.3	0.0	21.9	-0.31	0.53	0.1	0.0	838.1] Gat of Service
November 17, 2024	9.49 67	0.1 0.	00	0.0	9.79	672.9	27.02	1331.6	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.2	4.5	0.0	9.5	670.2	4.7	0.0	21.9	-0.30	1.22	0.1	16.8	914.5	
November 18, 2024	9.50 67	0.0 0.	00	0.0	9.79	677.5	26.54	1368.1	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.3	3.8	0.0	9.5	670.3	4.0	0.0	21.8	-0.30	1.24	0.1	0.0	676.0	
November 19, 2024	9.50 66	9.6 0.	00	0.0	9.98	666.1	23.67	1385.5	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.0	4.3	0.0	9.5	669.8	4.5	0.0	22.8	-0.32	1.25	0.0	0.4	387.3	
November 20, 2024	9.55 68	0.4 0.	00	0.0	9.93	669.7	17.47	1117.9	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	669.8	3.9	0.7	9.5	669.7	4.1	0.3	22.4	-0.31	1.26	0.1	6.3	276.9	
November 21, 2024	9.50 66	9.9 0.	00	0.0	9.99	667.3	23.17	1232.4	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.4	669.5	5.4	0.0	9.4	668.7	5.2	0.0	22.4	-0.31	1.26	0.1	160.4	264.4	
November 22, 2024	9.50 67	0.0 0.	00	0.0	9.98	661.8	23.51	1478.6	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	669.9	4.9	0.7	9.5	670.0	5.3	0.2	22.5	-0.30	1.26	0.1	229.5	584.0	
November 23, 2024	9.50 67	0.9 0.	00	0.0	9.98	665.6	22.36	1174.6	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.2	4.0	0.0	9.5	670.4	4.1	0.0	23.2	-0.30	1.25	0.1	170.8	265.9	
November 24, 2024	9.49 67	1.4 0.	00	0.0	9.97	662.7	18.74	1001.5	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.4	3.0	1.0	9.5	670.4	3.1	0.5	22.7	-0.30	1.26	0.1	96.9	151.2	
November 25, 2024	9.1 68	1.3 0.	00	0.0		660.8	19.27	959.2	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	670.1	2.2	0.5	9.5	677.3	2.1	0.2	22.2	-0.30	1.26	0.1	3.2	841.4	
November 26, 2024	N/A N	/A N	/A	N/A	9.99	661.1	19.07	1081.0	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	669.3	3.3	0.0	9.5	685.4	3.4	0.0	21.7	-0.30	1.26	0.1	0.0	3233.3	
November 27, 2024	N/A N	/A N	/A	N/A	9.96	661.6	17.26	1031.6	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	691.9	2.7	0.0	9.5	692.2	3.0	0.0	21.9	-0.31	1.27	0.1	5.0	464.5	
November 28, 2024	N/A N	/A N	/A	N/A	9.97	674.1	19.47	1405.0	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	703.4	2.6	0.0	9.6	665.4	2.9	0.0	22.2	-0.30	1.28	0.1	0.0	179.5	
November 29, 2024	N/A N	/A N	/A	N/A	9.94	679.4	20.63	973.4	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	690.1	3.0	0.0	9.5	675.3	3.1	0.0	22.4	-0.30	1.27	0.1	0.0	21.5]
November 30, 2024	N/A N	/A N	/A	N/A	9.95	664.4	19.74	1027.0	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	693.1	2.8	0.0	9.5	690.1	2.9	0.0	22.2	-0.29	1.27	0.1	0.0	11.0	
Avg	9.49 67	2.2 0.	00	0.0	9.94	669.3	25.37	1183.6	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.5	673.3	4.0	0.1	9.5	672.3	4.2	0.0	22.0	-0.31	1.22	0.1	23.5	519.8	N/A
Min	9.09 66	9.6 0.	00	0.0	9.79	655.1	17.26	471.0	N/A	N/A	N/A	N/A	N/A N/	A N	'A	N/A	9.4	669.3	2.2	0.0	9.4	665.4	2.1	0.0	21.4	-0.34	0.53	0.0	0.0	11.0	N/A
Max	9.55 68	4.6 0.	00	0.0	10.00	692.6	34.64	2273.3	N/A	N/A	N/A	N/A	N/A N/	A N	Ά	N/A	9.5	703.4	5.4	1.0	9.6	692.2	5.5	0.5	23.2	-0.29	1.28	0.1	229.5	3233.3	N/A

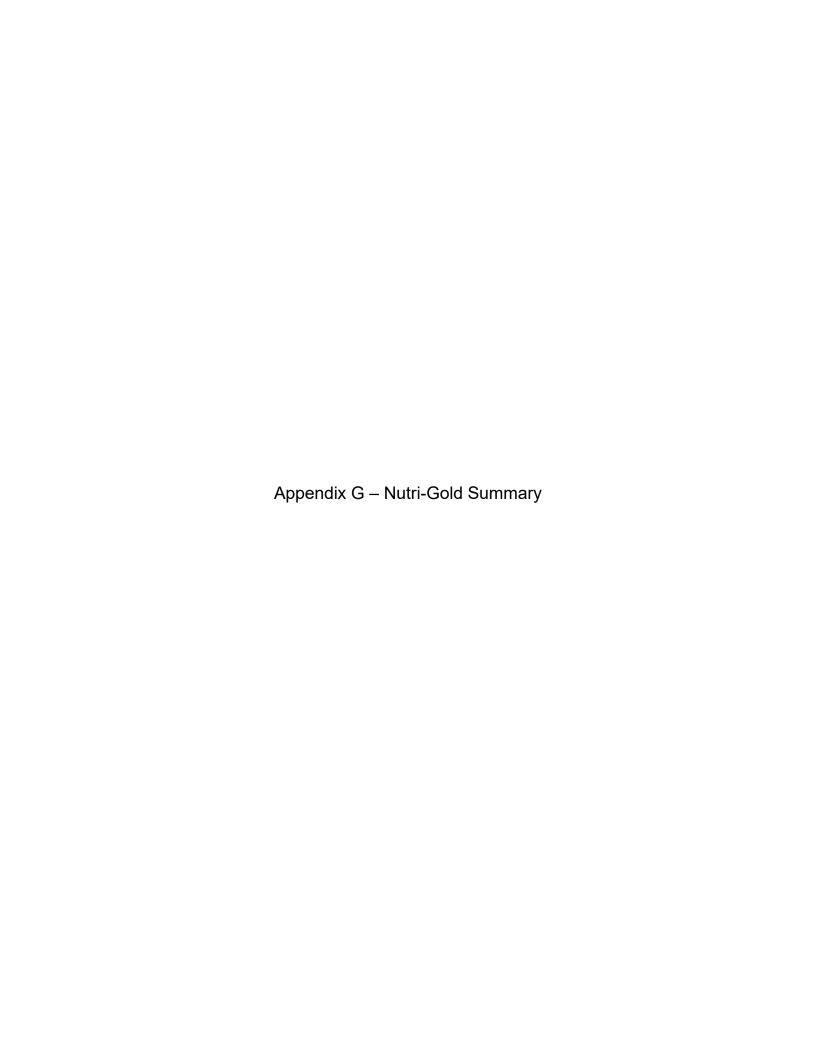
Indicates data for partial day

Gold Bar Wastewater Treatment Plant Daily Average Scrubber Report December 2024

Date		Scrubber 1 - East		Sci	ubber 4 - Fermente	r		Scrub	ber 2 - West			Scrubber 3 - EF	т		Scru	ubber 5			Scru	bber 6			GRF Scru	bber		Grit 6/7 Building Scrubber	Screen 4-8 Building Scrubber	Dewatering Facility Scrubber
Date	pH ORP (i	mV) H ₂ S In (ppm)	H ₂ S Out (ppb)	pH ORP (mV) H ₂ S In (ppm)	H ₂ S Out (ppb)	pН	ORP (mV)	H ₂ S In (ppm) H ₂ S	Out (ppb)	pH ORP	(mV) H2S In (pp	m) H2S Out (ppb)	pН	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	pH	ORP (mV)	H2S In (ppm)	H2S Out (ppb)	Temperature In (°C)	Pressure In (kPa)	Pressure Out (kPa)	H ₂ S Out (ppm)	H ₂ S Out (ppb)	H₂S Out (ppb)	H₂S Out (ppb)
December 1, 2024	N/A N/A	A N/A	N/A	9.97 664.5	19.03	909.3	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	700.0	2.4	0.0	9.5	695.5	2.7	0.0	22.5	-0.30	1.28	0.1	0.0	3.2	
December 2, 2024	N/A N/A	A N/A	N/A	9.96 664.8	18.41	921.4	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	696.0	2.7	0.0	9.5	696.4	2.9	0.0	21.9	-0.30	1.27	0.1	115.2	175.9	1
December 3, 2024	N/A N/A	N/A	N/A	9.93 668.4	15.40	703.1	N/A	N/A	N/A	N/A	N/A N	A N/A	N/A	9.5	697.8	2.8	0.0	9.5	695.0	3.0	0.0	22.3	-0.40	0.82	0.1	115.7	271.3	1
December 4, 2024	N/A N/A	N/A	N/A	9.88 682.2	12.86	618.9	N/A	N/A	N/A	N/A	N/A N	A N/A	N/A	9.5	700.8	2.4	0.0	9.5	693.8	2.5	0.0	24.1	-0.45	0.46	0.1	10.9	213.6	1
December 5, 2024	N/A N/A	N/A	N/A	9.97 666.6	17.83	1031.7	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	694.7	2.8	0.0	9.5	689.7	2.9	0.0	23.1	-0.47	0.42	0.1	36.8	284.3	1
December 6, 2024	N/A N/A	N/A	N/A	9.98 669.5	18.26	906.1	N/A	N/A	N/A	N/A	N/A N	A N/A	N/A	9.5	699.3	2.5	0.0	9.5	699.0	2.6	0.0	22.5	-0.47	0.46	0.1	34.4	138.6	1
December 7, 2024	N/A N/A	N/A	N/A	9.84 626.7	17.62	876.4	N/A	N/A	N/A	N/A	N/A N	A N/A	N/A	9.5	694.9	3.0	0.0	9.5	697.6	3.1	0.0	22.5	-0.47	0.44	0.1	77.0	136.9	1
December 8, 2024	N/A N/A	N/A	N/A	9.71 683.3	15.96	1447.2	N/A	N/A	N/A	N/A	N/A N	A N/A	N/A	9.5	690.0	3.1	0.0	9.5	695.0	3.1	0.0	22.6	-0.48	0.41	0.1	73.8	31.3	1
December 9, 2024	N/A N/A	N/A	N/A	9.92 684.6	17.97	1096.9	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	695.9	2.5	0.0	9.5	699.3	2.6	0.0	23.3	-0.48	0.45	0.1	0.0	103.2	1
December 10, 2024	N/A N/A	N/A	N/A	9.69 679.7	22.07	2791.4	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	694.7	2.5	0.1	9.5	695.9	2.6	0.0	23.4	-0.47	0.47	0.1	0.0	134.4	1
December 11, 2024	N/A N/A	N/A	N/A	9.77 685.0	20.64	2346.4	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	694.2	2.3	0.0	9.5	691.6	2.4	0.0	22.9	-0.46	0.46	0.1	4.8	340.5	1
December 12, 2024	N/A N/A	N/A	N/A	9.97 687.4	17.64	845.4	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	688.0	2.4	0.0	9.5	695.6	2.5	0.0	24.4	-0.45	0.45	0.1	13.9	472.0	1
December 13, 2024	N/A N/A	N/A	N/A	9.97 692.2	16.62	771.8	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	689.8	2.6	0.0	9.5	697.5	2.7	0.0	24.2	-0.46	0.45	0.1	0.0	452.0	1
December 14, 2024	N/A N/A	A N/A	N/A	9.95 688.2	15.75	756.6	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	687.8	3.1	0.0	9.5	694.5	3.1	0.0	24.2	-0.46	0.44	0.1	0.0	967.1	1
December 15, 2024	N/A N/A	A N/A	N/A	9.88 692.0	14.95	737.0	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	691.0	2.5	0.0	9.5	697.7	2.5	0.0	24.5	-0.46	0.45	0.1	0.0	1702.2	1
December 16, 2024	N/A N/A	N/A	N/A	9.96 690.1	15.76	636.9	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.4	705.1	1.9	0.0	9.4	699.1	1.9	0.0	25.1	-0.45	0.46	0.1	2.0	1103.0	Out of Service
December 17, 2024	N/A N/A	A N/A	N/A	9.95 688.0	14.71	774.1	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	700.6	2.0	0.0	9.5	704.3	2.0	0.0	25.4	-0.45	0.46	0.1	1.7	1069.0	1
December 18, 2024	N/A N/A	A N/A	N/A	9.95 690.9	17.39	707.3	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	701.7	2.0	0.0	9.5	707.1	1.9	0.0	25.3	-0.45	0.45	0.1	0.5	962.2	1
December 19, 2024	N/A N/A	A N/A	N/A	9.95 680.7	16.24	880.8	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	699.7	2.2	0.0	9.5	704.6	2.0	0.0	25.5	-0.45	0.46	0.1	0.0	1591.4	1
December 20, 2024	N/A N/A	A N/A	N/A	9.98 687.3	15.97	634.3	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	707.3	1.5	0.0	9.5	718.1	1.5	0.0	25.0	-0.45	0.45	0.1	0.0	764.4	1
December 21, 2024	N/A N/A	A N/A	N/A	9.98 683.9	15.41	552.3	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	704.9	1.9	0.0	9.5	708.6	1.9	0.0	24.3	-0.46	0.45	0.1	0.0	409.8	4
December 22, 2024		A N/A	N/A	9.90 687.2	14.46	555.3	N/A	N/A	N/A	N/A	N/A N		N/A	9.5	708.0	1.8	0.0	9.5	711.9	1.7	0.0	24.5	-0.47	0.45	0.1	34.7	396.3	4
December 23, 2024	N/A N/A	N/A	N/A	9.99 678.6	12.75	517.1	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	703.5	1.8	0.0	9.5	711.8	1.8	0.0	23.8	-0.45	0.78	0.1	32.2	325.7	1
December 24, 2024	N/A N/A	A N/A	N/A	9.85 676.9	13.36	540.8	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.6	689.5	2.1	0.0	9.5	701.1	2.1	0.0	23.3	-0.46	0.75	0.1	0.1	345.1	4
December 25, 2024	N/A N/A	N/A	N/A	9.96 689.3	14.14	666.5	N/A	N/A	N/A	N/A	N/A N		N/A	9.5	669.8	2.4	0.0	9.5	698.9	2.4	0.0	23.4	-0.47	0.44	0.1	0.0	282.7	4
December 26, 2024			N/A	9.91 690.2	13.20	720.4	N/A	N/A	,	N/A	N/A N		N/A	9.5	670.3	2.3	0.0	9.5	704.6	2.3	0.0	24.0	-0.46	0.44	0.1	7.7	167.5	4
December 27, 2024	N/A N/A	A N/A	N/A	9.95 689.8	12.65	588.6	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	669.9	2.0	0.0	9.5	710.1	2.0	0.0	23.6	-0.46	0.45	0.1	0.0	143.8	4
December 28, 2024	N/A N/A	N/A	N/A	9.97 692.1	10.90	414.2	N/A	N/A		N/A	N/A N		N/A	9.5	670.0	2.4	0.0	9.5	703.1	2.5	0.0	23.9	-0.46	0.45	0.1	0.0	224.0	4
December 29, 2024	N/A N/A	A N/A	N/A	9.98 688.4	12.72	497.4	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	670.0	2.0	0.0	9.5	709.0	2.0	0.0	24.4	-0.46	0.44	0.1	0.0	117.8	4
December 30, 2024		A N/A	N/A	9.90 689.5	14.69	711.8	N/A	N/A		N/A	N/A N		N/A	9.5	670.1	1.8	0.0	9.5	708.7	1.8	0.0	24.4	-0.45	0.45	0.1	0.0	74.5	4
December 31, 2024	N/A N/A	N/A	N/A	9.89 688.1	15.25	813.4	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.5	669.5	1.8	0.1	9.5	708.8	1.8	0.1	24.7	-0.46	0.45	0.1	0.0	51.2	
			1		1									1			1					T						
Avg	N/A N/A		N/A	9.92 681.5	15.83	870.0	N/A	N/A		N/A	,	/A N/A	N/A	9.5	691.1	2.3	0.0	9.5	701.4	2.3	0.0	23.8	-0.45	0.53	0.1	18.1	434.0	N/A
Min	N/A N/A		N/A	9.69 626.7	10.90	414.2	N/A	N/A		N/A	N/A N		N/A	9.4	669.5	1.5	0.0	9.4	689.7	1.5	0.0	21.9	-0.48	0.41	0.1	0.0	3.2	N/A
Max	N/A N/A	N/A	N/A	9.99 692.2	22.07	2791.4	N/A	N/A	N/A	N/A	N/A N	/A N/A	N/A	9.6	708.0	3.1	0.1	9.5	718.1	3.1	0.1	25.5	-0.30	1.28	0.1	115.7	1702.2	N/A

2024 Scrubber Bleach Usage (L as delivered 16% sodium hypochlorite solution)

	Janu	ıary	Febr	uary	Ma	rch	Ap	ril	M	ay	Ju	ne	Ju	ly	Aug	gust	Septe	ember	Octo	ober	Nove	mber	Decei	mber
_	East	West																						
1	329	608	0	422	283	446	483	550	447	159	287	916	632	858	1621	913	1193	778	938	767	939	602	484	369
2	331	641	591	412	297	430	414	444	361	306	297	938	524	824	2154	780	1165	796	1721	942	471	522	527	444
3	347	723	397	442	323	441	380	402	357	1369	434	823	552	601	1288	856	1209	863	2997	1099	484	643	460	400
4	344	576	401	424	281	409	414	452	437	604	1236	438	452	540	1413	832	1191	979	2047	1053	431	658	444	390
5	337	643	430	431	290	378	384	447	502	719	1446	514	575	615	927	407	1132	929	2326	918	1319	626	402	418
6	362	757	481	389	341	367	374	467	982	784	2021	583	603	706	438	754	1118	973	906	815	503	556	514	422
7	324	726	526	430	360	474	434	500	1409	550	1988	608	631	628	739	710	1285	1013	569	889	427	528	538	448
8	323	601	512	524	312	527	436	492	80	283	1311	783	788	806	616	741	1463	966	262	934	409	582	455	444
9	332	529	464	507	316	575	604	506	196	314	1244	756	836	512	714	747	1477	853	542	937	559	577	405	393
10	389	473	521	493	333	536	574	500	269	422	1240	731	987	1012	748	773	1380	1120	568	956	723	526	322	422
11	271	429	473	549	317	417	565	447	327	567	716	836	873	846	747	771	1491	1015	861	979	448	490	606	399
12	385	380	421	561	274	430	427	419	383	680	747	538	942	886	799	803	1486	948	1036	911	1111	503	460	384
13	405	402	501	532	232	381	468	472	678	758	801	507	1006	1016	840	966	1214	953	1196	867	706	573	500	432
14	384	395	279	554	152	295	456	427	741	637	1399	677	896	896	775	920	892	1111	1304	906	767	536	448	471
15	382	432	304	596	180	310	516	348	713	725	1054	698	928	990	714	1286	1067	1031	1366	1009	1001	520	553	414
16	388	505	352	592	180	378	472	310	466	737	795	819	958	805	594	521	1016	980	1444	1043	955	507	531	341
17	316	483	355	624	273	420	515	257	188	430	307	826	1027	833	696	736	1055	1011	1457	1060	644	597	514	342
18	250	509	387	715	237	378	480	332	251	663	360	700	1107	796	749	839	1042	1048	1768	1099	729	486	589	334
19	306	481	420	674	253	389	588	316	346	811	328	692	780	977	831	985	859	1120	2299	953	531	555	457	362
20	323	541	435	649	304	395	619	372	568	527	380	704	1177	985	1045	658	678	962	1171	1017	416	536	601	269
21	246	501	450	393	445	410	603	387	706	613	354	736	1347	974	1492	861	724	958	700	823	572	628	557	379
22	337	516	390	383	515	415	633	326	723	836	386	762	1327	794	1057	847	756	1206	721	812	496	653	459	319
23	455	549	440	321	552	500	609	404	654	555	315	916	1373	872	1311	989	799	1038	995	760	560	513	399	263
24	941	563	391	375	564	-36	1409	516	737	556	443	879	1358	929	1134	1006	762	1003	1023	676	541	440	418	288
25	1272	531	390	413	510	480	684	440	849	590	443	804	2779	1260	1241	684	864	992	786	755	502	341	387	384
26	1689	515	366	337	498	459	514	531	806	737	333	825	3239	931	1232	778	701	908	393	775	453	461	374	346
27	2136	527	250	259	564	431	533	529	1091	624	585	916	1980	795	1009	996	603	871	653	609	391	480	398	322
28	2190	526	321	358	394	464	565	575	516	701	522	698	1571	880	1750	1179	651	925	425	632	433	418	483	391
29	442	475	251	406	346	475	582	501	380	605	550	810	1641	848	1688	635	672	681	754	780	617	404	472	292
30	253	304			409	499	663	583	312	675	516	856	291	876	1210	937	736	653	422	1043	666	412	438	287
31	279	419			492	528			311	710			583	913	626	930			451	623			415	303
Total (L)	17,068	16,260	11,499	13,765	10,826	13,002	16,399	13,253	16,789	19,248	22,839	22,290	33,762	26,206	32,197	25,839	30,679	28,683	34,104	27,446	18,805	15,871	14,612	11,476
Total (L)	33,3	329	25,2	264	23,	829	29,0	652	36,0	037	45,	129	59,9	969	58,	036	59,	362	61,	550	34,6	576	26,0	088


2024 Scrubber Caustic Usage (kg 100%)

	Janu	ary	Febr	uary	Ma	arch	Ą	oril	М	ay	Ju	ne	Ju	ıly	Aug	gust	Septe	mber	Octo	ber	Nove	mber	Decer	mber
-	East	West																						
1	40	60	44	56	51	65	54	61	55	39	39	73	68	78	94	65	113	76	116	55	75	51	52	27
2	35	56	46	63	38	56	45	51	44	38	42	71	58	79	102	63	105	66	97	65	67	52	55	31
3	41	54	53	60	52	58	42	56	7	53	54	74	45	73	93	67	102	73	131	73	51	55	40	45
4	29	43	35	58	37	52	38	51	70	59	90	72	64	83	73	60	100	69	121	81	59	50	51	29
5	41	76	48	55	45	45	44	43	51	46	83	53	61	69	81	77	97	81	110	69	72	49	49	36
6	41	86	35	61	44	54	37	51	51	66	95	59	61	79	63	51	98	76	92	64	83	95	50	46
7	34	70	49	50	44	66	53	48	64	68	94	58	59	77	71	53	99	86	58	69	78	53	39	40
8	34	63	46	58	40	60	41	50	49	46	85	60	76	78	76	57	107	84	65	72	75	50	35	46
9	35	57	49	58	33	60	56	47	42	41	80	70	68	95	81	56	103	66	60	68	75	53	41	45
10	38	62	40	52	47	66	48	47	39	51	93	66	86	75	80	54	97	78	79	70	76	45	34	38
11	41	59	51	57	39	73	38	40	48	76	67	73	76	89	79	54	96	75	92	70	69	40	43	34
12	21	51	40	57	48	57	56	49	37	77	75	68	71	80	80	53	94	81	99	73	85	44	50	40
13	46	51	52	53	37	56	48	54	44	76	87	65	72	79	80	73	95	68	99	60	80	46	54	48
14	40	51	35	52	39	56	41	47	81	68	108	63	80	81	79	56	73	70	106	67	67	43	42	51
15	22	49	18	54	41	56	55	44	49	71	95	64	82	87	79	72	88	86	96	73	75	42	45	49
16	30	54	57	49	43	65	51	41	49	87	65	63	83	63	65	67	92	76	99	70	80	39	44	39
17	25	50	41	56	48	57	48	39	33	59	37	67	99	59	80	54	91	75	83	70	62	46	43	32
18	39	58	53	63	51	58	50	40	64	61	44	69	133	55	79	61	95	73	94	99	61	45	49	42
19	11	53	46	61	43	59	49	46	57	71	38	72	110	67	79	67	84	69	105	87	65	39	43	41
20	18	54	49	62	51	56	49	31	70	65	41	70	106	66	97	93	78	66	87	80	53	37	48	38
21	23	58	37	58	54	56	44	30	68	64	42	70	111	67	116	59	73	61	57	75	66	36	53	52
22	27	52	41	52	50	53	58	44	69	65	34	71	104	62	102	56	79	67	69	66	64	43	45	47
23	29	56	45	45	47	57	43	45	67	73	43	74	105	55	113	75	84	83	96	67	69	36	49	47
24	65	69	35	53	56	55	61	55	62	56	47	75	93	61	92	68	81	69	85	66	30	30	43	34
25	50	60	44	55	53	53	52	46	65	64	51	73	129	83	97	65	90	71	48	55	58	31	40	35
26	75	61	42	52	48	50	45	51	68	71	58	79	135	80	106	76	69	79	54	53	52	36	39	44
27	75	59	16	49	49	47	52	40	58	76	51	79	132	66	115	80	68	56	58	52	47	52	39	27
28	71	65	62	37	54	52	46	46	57	71	69	82	114	67	131	95	68	63	48	50	49	37	40	42
29	42	56	52	46	44	57	58	52	53	60	47	75	105	65	132	79	66	49	67	61	56	28	39	34
30	46	53			50	51	53	58	41	57	50	73	93	64	117	77	74	49	71	53	50	37	41	31
31	34	56			51	53			48	57			74	73	81	75			41	48			37	27
Total (kg)	1,201	1,802	1,261	1,581	1,428	1,760	1,455	1,405	1,659	1,933	1,903	2,081	2,752	2,256	2,814	2,059	2,656	2,143	2,584	2,079	1,951	1,337	1,372	1,218
Total (kg)	3,0	02	2,8	341	3,	188	2,8	361	3,5	592	3,9	84	5,0	800	4,8	373	4,7	'99	4,6	63	3,2	88	2,5	91

Appendix F – Odour Complaints

Date Tim	ne Loacation	Complaint Description	Call Back Details	Wind Direction	Scrubber Status	Maintenance Activities	Action Taken	Is GBWWTP the Likely Source (Y/N)	Consistent with EnviroSuite Model
8/30/2024	4407 109 Ave	Details of customer odour complaint: Smells very strong Odour inside or outside Outside Description of odour: Sewage Odour intensity (scale from 1-10): 10 Time noticed odour and for how long: Starting Aug 28 till Aug 30 Is it a reoccurring issue? Yes	Called customer back on August 30 at 09:20. Customer noticed odour in the past couple days, but last night, it was especially bad, so they called in to report it. Let the customer know we have a bioreactor tank down for maintenance right now and we believe that is the source of the odour. Noted we also observed H2S at the AQMS last night around 7-8 PM, but it has otherwise been low. Also noted there was a shift in wind direction on Aug 27 which likely did not help. Let the customer know we will look into adding a water cap to the tank to try and reduce odour and that the tank will be returned to service in ~2 weeks. (Customer just moved back into the area after being away for a few years and asked her neighbours if the odours are still bad and they said it is getting better and only bac about 2x per year. Customer also noted they don't like the perfume smell (from odour mister)).	i i	Operational	Bioreactor 1	Scaffolding was taken out of the tank earlier this week, but no FE was added. Looking to add water cap to tank to prevent odours.	Y	Y
1/24/2024	14:25 5304 Ada Blvd	Voicemail recieved through Water Canada Projects noting smell is really bad today and requesting someone to look into it.	Gold Bar Operations called customer back to get more information. Customer described that they had previously had issues with collection system odour.	S	Operational	N/A	Unable to identify any causes from GB. Forwarded to Wastewater Collection Network Operations who went out and plugged some manholes that were emitting odour.	N	N/A

Substance Loading Rates on Nutrigold Fields - 2024

Nutrigold Field #	#2024SE255	519	OC-0)1	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
21492.9	5.46	1172	145	58	20.2	TP	31836	37311	643				
						TN	34221	40106	691				
						NH3-N	20582	24121	416				
Landowner	G	Gary Koenig				As	5.2	6.09	0.105				
Legal Description	S	E-25-55-19 W4				Cd	2.7	3.16	0.055	12674	1500	11791	600
Start Date	2	4-Apr-24				Cr	94	110.2	1.90	364	20	339	8
End Date	1	.3-May-24				Cu	379	444	7.66	90	15	84	6
Soil Class	C	Class 1				Pb	35	41.0	0.707	978	20	910	8
Biosolids Type	G	Gravity Thickened				Mn	275	322	5.56				
						Hg	1.29	1.512	0.026	26528	3000	24679	1100
						Ni	76	89.1	1.536	450	100	419	40
						Se	28.6	33.52	0.578				
						Zn	824	966	16.6	42	10	39	4
						Со	17.8	20.9	0.4				

Nutrigold Field	#2024SW/SI	E065518	OC-	02	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	Ha	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
33323.87	6.19	2063	234	95	21.7	TP	31836	65678	691				
						TN	34221	70598	743				
						NH3-N	20582	42461	447				
Landowner	١	Nathaniel Ostashewski				As	5.2	10.73	0.113				
Legal Description	S	SW/SE-06-55-18 W4				Cd	2.7	5.57	0.059	12674	1500	11791	600
Start Date	3	3-May-24				Cr	94	193.9	2.04	364	20	339	8
End Date	5	5-Jun-24				Cu	379	782	8.23	90	15	84	6
Soil Class	C	Class 1				Pb	35	72.2	0.760	978	20	910	8
Biosolids Type	0	Gravity Thickened				Mn	275	567	5.97				
						Hg	1.29	2.661	0.028	26528	3000	24679	1100
						Ni	76	156.8	1.650	450	100	419	40
						Se	28.6	59.00	0.621				
						Zn	824	1700	17.9	42	10	39	4
						Со	17.8	36.7	0.4				

Nutrigold Field #	#2024SE0154	419	OC-	05	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	Ha	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
8793.47	6.55	579	66	27	21.5	TP	31836	18439	683				
						TN	34221	19820	734				
						NH3-N	20582	11921	442				
Landowner	В	arry Pich				As	5.2	3.01	0.112				
Legal Description	S	E-01-54-19 W4				Cd	2.7	1.56	0.058	12674	1500	11791	600
Start Date	2	3-Jun-24				Cr	94	54.4	2.02	364	20	339	8
End Date	2	6-Jun-24				Cu	379	220	8.13	90	15	84	6
Soil Class	С	lass 1				Pb	35	20.3	0.751	978	20	910	8
Biosolids Type	G	iravity Thickened				Mn	275	159	5.90				
						Hg	1.29	0.747	0.028	26528	3000	24679	1100
						Ni	76	44.0	1.630	450	100	419	40
						Se	28.6	16.56	0.614				
						Zn	824	477	17.7	42	10	39	4
						Со	17.8	10.3	0.4				

Nutrigold Field	#2024NW16	5318	OC-0)6	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
9529.14	6.51	624	71	29	21.5	TP	31836	19852	685				
						TN	34221	21339	736				
						NH3-N	20582	12834	443				
Landowner	А	llan Sarafinchan				As	5.2	3.24	0.112				
Legal Description	N	IW-16-53-18 W4				Cd	2.7	1.68	0.058	12674	1500	11791	600
Start Date	2	-Jul-24				Cr	94	58.6	2.02	364	20	339	8
End Date	5	-Jul-24				Cu	379	236	8.15	90	15	84	6
Soil Class	C	lass 1				Pb	35	21.8	0.753	978	20	910	8
Biosolids Type	G	ravity Thickened				Mn	275	171	5.91				
						Hg	1.29	0.804	0.028	26528	3000	24679	1100
						Ni	76	47.4	1.634	450	100	419	40
						Se	28.6	17.83	0.615				
						Zn	824	514	17.7	42	10	39	4
						Со	17.8	11.1	0.4				

Nutrigold Field #	#2024NW/S	W355419	OC-	07	Loading Rate		Biosolids	Field L	oading.		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
36017.9	6.85	2479	281	114	21.7	TP	31836	78921	692				
						TN	34221	84832	744				
						NH3-N	20582	51022	448				
Landowner	[Dale Mandrusiak				As	5.2	12.89	0.113				
Legal Description	1	NW/SW-35-54-19 W4				Cd	2.7	6.69	0.059	12674	1500	11791	600
Start Date	6	5-Jul-24				Cr	94	233.0	2.04	364	20	339	8
End Date	2	25-Jul-24				Cu	379	940	8.24	90	15	84	6
Soil Class	(Class 1				Pb	35	86.8	0.761	978	20	910	8
Biosolids Type	(Gravity Thickened				Mn	275	682	5.98				
						Hg	1.29	3.198	0.028	26528	3000	24679	1100
						Ni	76	188.4	1.653	450	100	419	40
						Se	28.6	70.90	0.622				
						Zn	824	2043	17.9	42	10	39	4
						Со	17.8	44.1	0.4				

Nutrigold Field	#SE/SW0755	518	OC-	08	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	Ha	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
37625.49	6.78	2550	291	118	21.6	TP	31836	81190	688				
						TN	34221	87272	740				
						NH3-N	20582	52489	445				
Landowner	١	Nathaniel Ostashewski				As	5.2	13.26	0.112				
Legal Description	S	E/SW-07-55-18 W4				Cd	2.7	6.89	0.058	12674	1500	11791	600
Start Date	2	.9-Jul-24				Cr	94	239.7	2.03	364	20	339	8
End Date	2	1-Aug-24				Cu	379	967	8.19	90	15	84	6
Soil Class		1				Pb	35	89.3	0.756	978	20	910	8
Biosolids Type	G	Gravity Thickened				Mn	275	701	5.94				
						Hg	1.29	3.290	0.028	26528	3000	24679	1100
						Ni	76	193.8	1.643	450	100	419	40
						Se	28.6	72.94	0.618				
						Zn	824	2101	17.8	42	10	39	4
						Со	17.8	45.4	0.4				

Substance Loading Rates on Nutrigold Fields - 2024

Nutrigold Field	#2024SE1	45419	DW	-05	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
5807.82	22.0	1277	126	51	25.0	TP	28260	36088	708				
						TN	30740	39255	770				
						NH3-N	6972	8903	175				
Landowner		Dwayne Stach				As	5.0	6.39	0.125				
Legal Description		SE-14-54-19 W4				Cd	4.9	6.26	0.123	6273	1500	5767	600
Start Date		31-Aug-24				Cr	147	187.7	3.68	209	20	192	8
End Date		12-Sep-24				Cu	448	572	11.22	69	15	63	6
Soil Class		Class 1				Pb	58	74.1	1.452	530	20	487	8
Biosolids Type		Centrifuge Dewate	ered			Mn	344	439	8.61				
						Hg	1.54	1.967	0.039	19961	3000	18351	1100
						Ni	39	49.8	0.977	788	100	725	40
						Se	6.6	8.43	0.165				
						Zn	844	1078	21.1	36	10	33	4
						Со	6.9	8.8	0.2				

Nutrigold Field	#2024SE/S	W285519	DW	-01	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
10175.02	20.8	2100	215	87	24.1	TP	28260	59332	682				
						TN	30740	64539	742				
						NH3-N	6972	14638	168				
Landowner		Rick Anderson				As	5.0	10.50	0.121				
Legal Description		SE/SW-28-55-19	W4			Cd	4.9	10.29	0.118	6273	1500	5767	600
Start Date		22-Jun-24				Cr	147	308.6	3.55	209	20	192	8
End Date		15-Jul-24				Cu	448	941	10.81	69	15	63	6
Soil Class		Class 1				Pb	58	121.8	1.400	530	20	487	8
Biosolids Type		Centrifuge Dewa	tered			Mn	344	722	8.30				
						Hg	1.54	3.233	0.037	19961	3000	18351	1100
						Ni	39	81.9	0.941	788	100	725	40
						Se	6.6	13.86	0.159				
						Zn	844	1772	20.4	36	10	33	4
						Co	6.9	14.5	0.2				

Nutrigold Field	#2024NE1	95518	DW	-02	Loading Rate		Biosolids	Field L	oading.		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
6201.53	22.5	1383	150	61	22.7	TP	28260	39071	641				
						TN	30740	42499	697				
						NH3-N	6972	9639	158				
Landowner		Rick Anderson				As	5.0	6.91	0.113				
Legal Description		NE-19-55-18 W4				Cd	4.9	6.77	0.111	6273	1500	5767	600
Start Date		16-Jul-24				Cr	147	203.2	3.33	209	20	192	8
End Date		31-Jul-24				Cu	448	619	10.15	69	15	63	6
Soil Class		Class 1				Pb	58	80.2	1.315	530	20	487	8
Biosolids Type		Centrifuge Dewate	red			Mn	344	476	7.80				
						Hg	1.54	2.129	0.035	19961	3000	18351	1100
						Ni	39	53.9	0.884	788	100	725	40
						Se	6.6	9.12	0.150				
						Zn	844	1167	19.1	36	10	33	4
						Со	6.9	9.5	0.2				

Nutrigold Field	#2024NE2	15519	DW	/-03	Loading Rate		Biosolids	Field L	oading.		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
5974	21.76	1304	126	52.5	24.8	TP	28260	36845	702				
						TN	30740	40079	763				
						NH3-N	6972	9090	173				
Landowner		Dwayne Stach				As	5.0	6.52	0.124				
Legal Description		NE-21-55-19 W4				Cd	4.9	6.39	0.122	6273	1500	5767	600
Start Date		1-Aug-24				Cr	147	191.7	3.65	209	20	192	8
End Date		14-Aug-24				Cu	448	584	11.13	69	15	63	6
Soil Class		Class 1				Pb	58	75.6	1.440	530	20	487	8
Biosolids Type		Centrifuge Dewate	red			Mn	344	449	8.54				
						Hg	1.54	2.008	0.038	19961	3000	18351	1100
						Ni	39	50.8	0.969	788	100	725	40
						Se	6.6	8.61	0.164				
						Zn	844	1100	21.0	36	10	33	4
						Со	6.9	9.0	0.2				

Nutrigold Field	#2024NE1	15419	DW	-04	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	Ha	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
6234.57	22.93	1430	150	60	23.8	TP	28260	40410	674				
						TN	30740	43957	733				
						NH3-N	6972	9970	166				
Landowner		Dwayne Stach				As	5.0	7.15	0.119				
Legal Description		NE-11-54-19 W4				Cd	4.9	7.01	0.117	6273	1500	5767	600
Start Date		15-Aug-24				Cr	147	210.2	3.50	209	20	192	8
End Date		30-Aug-24				Cu	448	641	10.68	69	15	63	6
Soil Class		Class 1				Pb	58	82.9	1.382	530	20	487	8
Biosolids Type		Centrifuge Dewate	ered			Mn	344	492	8.20				
						Hg	1.54	2.202	0.037	19961	3000	18351	1100
						Ni	39	55.8	0.929	788	100	725	40
						Se	6.6	9.44	0.157				
						Zn	844	1207	20.1	36	10	33	4
						Co	6.9	9.9	0.2				

Nutrigold Field	#2024NE2	:05318	DW	-06	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
2082.66	24.49	512	58	24	21.3	TP	28260	14464	603				
						TN	30740	15734	656				
						NH3-N	6972	3568	149				
Landowner		Suzie Stack				As	5.0	2.56	0.107				
Legal Description		NE-20-53-18 W4				Cd	4.9	2.51	0.104	6273	1500	5767	600
Start Date		14-Sep-24				Cr	147	75.2	3.13	209	20	192	8
End Date		1-Oct-24				Cu	448	229	9.55	69	15	63	6
Soil Class		Class 1				Pb	58	29.7	1.237	530	20	487	8
Biosolids Type		Centrifuge Dewate	red			Mn	344	176	7.34				
						Hg	1.54	0.788	0.033	19961	3000	18351	1100
						Ni	39	20.0	0.832	788	100	725	40
						Se	6.6	3.38	0.141				
						Zn	844	432	18.0	36	10	33	4
						Co	6.9	3.5	0.1				

Nutrigold Field	#2024NW	085317	DW-	-07	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
5239.79	24.01	1260	126	51	24.7	TP	28260	35608	698				
						TN	30740	38732	759				
						NH3-N	6972	8785	172				
Landowner		Myron Fill (Brad S	Sabo)			As	5.0	6.30	0.124				
Legal Description		NW-08-53-17 W4	ļ			Cd	4.9	6.17	0.121	6273	1500	5767	600
Start Date		17-Sep-24				Cr	147	185.2	3.63	209	20	192	8
End Date		28-Sep-24				Cu	448	564	11.07	69	15	63	6
Soil Class		Class 1				Pb	58	73.1	1.433	530	20	487	8
Biosolids Type		Centifuge Dewate	ered			Mn	344	433	8.50				
						Hg	1.54	1.940	0.038	19961	3000	18351	1100
						Ni	39	49.1	0.964	788	100	725	40
						Se	6.6	8.32	0.163				
						Zn	844	1063	20.9	36	10	33	4
						Со	6.9	8.7	0.2				

Substance Loading Rates on Olstad Fields - 2024

Olstad Field	#2024NE	095319	00	C-03	Loading Rate		Biosolids	Field L	oading.		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	Ha	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
17613	6.11	1056	120	48.5	21.8	TP	31836	33631	693				
						TN	34221	36150	745				
						NH3-N	20582	21742	448				
Landowner		Tom Cossey				As	5.2	5.49	0.113				
Legal Descript	tion	NE-09-53-19 W4				Cd	2.7	2.85	0.059	12674	1500	11791	600
Start Date		14-May-24				Cr	94	99.3	2.05	364	20	339	8
End Date		2-Jun-24				Cu	379	400	8.25	90	15	84	6
Soil Class		Clas 1				Pb	35	37.0	0.762	978	20	910	8
Biosolids Type	е	Gravity Thickened				Mn	275	290	5.99				
						Hg	1.29	1.363	0.028	26528	3000	24679	1100
						Ni	76	80.3	1.655	450	100	419	40
						Se	28.6	30.21	0.623				
						Zn	824	870	17.9	42	10	39	4
						Со	17.8	18.8	0.4				

Olstad Field	#2024SW	065418	00	C-04	Loading Rate		Biosolids	Field L	oading.		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	Ha	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
18783	6.27	1180	140	57	20.7	TP	31836	37552	659				
						TN	34221	40365	708				
						NH3-N	20582	24277	426				
Landowner		Suzie Stack				As	5.2	6.13	0.108				
Legal Descrip	otion	SW-06-54-18 W4				Cd	2.7	3.18	0.056	12674	1500	11791	600
Start Date		7-Jun-24				Cr	94	110.9	1.95	364	20	339	8
End Date		21-Jun-24				Cu	379	447	7.84	90	15	84	6
Soil Class		Class 1				Pb	35	41.3	0.724	978	20	910	8
Biosolids Typ	e	Gravity Thickened				Mn	275	324	5.69				
						Hg	1.29	1.522	0.027	26528	3000	24679	1100
						Ni	76	89.6	1.573	450	100	419	40
						Se	28.6	33.73	0.592				
						Zn	824	972	17.1	42	10	39	4
						Со	17.8	21.0	0.4				

Olstad Field	#2024SE0	065418	OC:	-09	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
12574	6.48	816	100	40	20.4	TP	31836	25979	649				
						TN	34221	27924	698				
						NH3-N	20582	16795	420				
Landowner		Ed Dupont				As	5.2	4.24	0.106				
Legal Descrip	tion	SE-06-54-18 W4				Cd	2.7	2.20	0.055	12674	1500	11791	600
Start Date		23-Aug-24				Cr	94	76.7	1.92	364	20	339	8
End Date		28-Aug-24				Cu	379	309	7.73	90	15	84	6
Soil Class		Class 1				Pb	35	28.6	0.714	978	20	910	8
Biosolids Type	e	Gravity Thickened				Mn	275	224	5.61				
						Hg	1.29	1.053	0.026	26528	3000	24679	1100
						Ni	76	62.0	1.550	450	100	419	40
						Se	28.6	23.34	0.583				
						Zn	824	672	16.8	42	10	39	4
						Со	17.8	14.5	0.4				

Appendix H – Third Party Agricultural Summary

Olstad Field	#2024SW	055523	OC	-10	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	Ha	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
21190	6.54	1383	157	63.5	21.8	TP	31836	44030	693				
						TN	34221	47328	745				
						NH3-N	20582	28465	448				
Landowner		Rick Shewchuk				As	5.2	7.19	0.113				
Legal Descrip	tion	SW-05-55-23 W4				Cd	2.7	3.73	0.059	12674	1500	11791	600
Start Date		4-Sep-24				Cr	94	130.0	2.05	364	20	339	8
End Date		10-Sep-24				Cu	379	524	8.25	90	15	84	6
Soil Class		Class 1				Pb	35	48.4	0.762	978	20	910	8
Biosolids Type	e	Gravity Thickened				Mn	275	380	5.99				
						Hg	1.29	1.784	0.028	26528	3000	24679	1100
						Ni	76	105.1	1.655	450	100	419	40
						Se	28.6	39.55	0.623				
						Zn	824	1140	17.9	42	10	39	4
						Со	17.8	24.6	0.4				

Olstad Field	#2024SW	325423	00	-11	Loading Rate		Biosolids	Field L	oading.		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	Ha	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
36808	6.59	2426	280	113	21.5	TP	31836	77235	683				
						TN	34221	83020	735				
						NH3-N	20582	49932	442				
Landowner		Lee Watrin/Wat	rin Grain			As	5.2	12.62	0.112				
Legal Descrip	tion	NW/SW-32-54-2	23 W4			Cd	2.7	6.55	0.058	12674	1500	11791	600
Start Date		11-Sep-24				Cr	94	228.0	2.02	364	20	339	8
End Date		30-Sep-24				Cu	379	919	8.14	90	15	84	6
Soil Class		Class 1				Pb	35	84.9	0.751	978	20	910	8
Biosolids Type	e	Gravity Thickens	ed			Mn	275	667	5.90				
						Hg	1.29	3.130	0.028	26528	3000	24679	1100
						Ni	76	184.4	1.632	450	100	419	40
						Se	28.6	69.38	0.614				
						Zn	824	1999	17.7	42	10	39	4
						Со	17.8	43.2	0.4				

Olstad Field	#2024NE	105523	OC-	-12	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
20600	6.57	1351	153	62	21.8	TP	31836	43011	694				
						TN	34221	46233	746				
						NH3-N	20582	27806	448				
Landowner		Lee Watrin/Watrir	n Grain			As	5.2	7.03	0.113				
Legal Descrip	tion	NE-10-55-23 W4				Cd	2.7	3.65	0.059	12674	1500	11791	600
Start Date		24-Sep-24				Cr	94	127.0	2.05	364	20	339	8
End Date		3-Oct-24				Cu	379	512	8.26	90	15	84	6
Soil Class		Class 1				Pb	35	47.3	0.763	978	20	910	8
Biosolids Typ	e	Gravity Thickened				Mn	275	372	5.99				
						Hg	1.29	1.743	0.028	26528	3000	24679	1100
						Ni	76	102.7	1.656	450	100	419	40
						Se	28.6	38.64	0.623				
						Zn	824	1113	18.0	42	10	39	4
						Со	17.8	24.0	0.4				

Appendix H - Third Party Agricultural Summary

Olstad Field	#2024NE	245519	OC-	-14	Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Ac	На	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
16569	6.81	1126	130	52	21.7	TP	31836	35841	689				
						TN	34221	38526	741				
						NH3-N	20582	23171	446				
Landowner		Gary Koenig				As	5.2	5.85	0.113				
Legal Descrip	tion	NE-24-55-19 W4				Cd	2.7	3.04	0.058	12674	1500	11791	600
Start Date		4-Oct-24				Cr	94	105.8	2.04	364	20	339	8
End Date		11-Oct-24				Cu	379	427	8.21	90	15	84	6
Soil Class		Class 1				Pb	35	39.4	0.758	978	20	910	8
Biosolids Type	e	Gravity Thickened				Mn	275	310	5.95				
						Hg	1.29	1.452	0.028	26528	3000	24679	1100
						Ni	76	85.6	1.645	450	100	419	40
						Se	28.6	32.20	0.619				
						Zn	824	928	17.8	42	10	39	4
						Со	17.8	20.0	0.4				

February 24, 2025

Alberta Environment and Protected Areas 111 Twin Atria Building 4999 – 98 Avenue NW Edmonton, AB T6B 2X3 FILE: ENW.BIOS03089-02
Via Email: DBartlett@epcor.com
olstad.co@gmail.com

ISSUED FOR USE

Attention: Mohammad Raham, P.Eng.

Environmental Protection and Enhancement Act Team Lead Capital District – Regulatory Assurance Division North

Subject: 2024 Summary Report on Dewatered Biosolids Application to Marginal Lands

within Strathcona County (Authorization No. 639-32733-SLU) and within Sturgeon County (Authorization No. 639-32787-SLU)

1.0 INTRODUCTION

Tetra Tech Canada Inc. (Tetra Tech) was retained by Olstad & Company Ltd. (Olstad & Company) and EPCOR Water Services Inc. (EPCOR) to prepare the 2024 Summary Report for Dewatered Biosolids Application to Marginal Land. Biosolids application was completed in 2023 in general accordance with the Alberta Environment and Protected Areas (EPA, formerly Alberta Environment [AENV]) 2001 Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands (the Guidelines)¹ as a beneficial, non-agricultural use of biosolids.

The 2024 Summary Report provides an update to the 2023 Summary Report² and includes post-application metals sampling data and monitoring results (Section 6.0) for Alberta Tier 1 metals as required in the authorizations.

Olstad & Company applied dewatered biosolids to two areas in 2023. The first area included one field located in Strathcona County near Josephburg, AB comprising approximately 71.4 hectares (ha) of land across two quarter sections (Figure 1). The second area included three fields in Sturgeon County near Gibbons, AB comprising approximately 120 ha of land within three quarter sections (Figures 2, 3, and 4). The fields were considered marginal lands as they are generally lower producing (due the lower soil pH).

The objective was to maximize the organic matter application from biosolids in an effort to increase the organic matter content of the soil without exceeding the maximum allowable nitrogen application rates. The increased soil organic matter content is expected to:

- Improve soil health through increased soil tilth and increased soil moisture holding capacity.
- Improve productivity through the application of crop nutrients in an environmentally sound manner.
- Improve productivity through increased crop response to chemical fertilizers in the future.

In an effort to increase the organic matter content of the soil, the biosolids application rate was limited by the volume of available biosolids and/or the maximum allowable nitrogen application rate (the most limiting of either total or ammonium nitrogen based on the dewatered biosolids analytical data) rather than the total solids content.

¹ Alberta Environment. 2001. Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands. Municipal Program Development Branch. Environmental Services Division. Environmental Services. Edmonton, Alberta. Pub No. T/594. ISBN: 0-7785-1490-0.

² Tetra Tech Canada Inc. 2024. 2023 Summary Report on Dewatered Biosolids Application to Marginal Lands within Strathcona County (Authorization No. 639-32733-SLU) and within Sturgeon County (Authorization No. 639-32787-SLU).

2.0 REGULATORY APPROVALS

On behalf of Olstad & Company and EPCOR, Tetra Tech prepared Applications^{3,4} to EPA for Authorization to surface apply and incorporate Dewatered Biosolids (anaerobically digested sludge) from EPCOR's Clover Bar lagoons. Separate Letters of Authorization were sought for this project because the marginal lands were not eligible for inclusion under the normal Notification process described in section 4.6 of EPCOR Wastewater Approval No. 639-03-06. The marginal lands had a 0-30 centimetre (cm) average pH value less than 6.0, and as such, fell outside of the standard definition of agricultural lands as defined in the Guidelines and the permitted variance which allows application of biosolids to lands with a pH of 6.0 and higher⁵.

On June 16, 2023, EPCOR submitted a Biosolids Stockpile Notification letter to EPA notifying the Director that, in accordance with section 4.6 of Environmental Protection and Enhancement Act (EPEA) Approval 639-03-06, EPCOR planned to stockpile municipal biosolids at SW 23-55-23 W4M within Sturgeon County. Due to crop logistics and landowner request, the stockpiling location was changed to the NW 14-55-23 W4M.

On September 6, 2023, EPCOR submitted a Biosolids Stockpile Notification letter to EPA, notifying the Director that, in accordance with section 4.6 of EPEA Approval 639-03-06, EPCOR planned to stockpile municipal biosolids at SE 07-54-21 W4M within Strathcona County.

On October 16, 2023, EPCOR received Authorization No. 639-32733-SLU to apply wastewater biosolids to the following quarter sections in Strathcona County:

- NW 07-54-21 W4M
- SW 07-54-21 W4M
- SE 07-54-21 W4M

On October 18, 2023, EPCOR received Authorization No. 639-32787-SLU to apply wastewater biosolids to the following quarter sections in Sturgeon County:

- NW 02-55-23 W4M
- SW 11-55-23 W4M
- NW 14-55-23 W4M
- NE 14-55-23 W4M
- SW 23-55-23 W4M

Stockpiling Notification letters and Application Authorization letters are attached in Appendix B.

⁵ Patterson, S. (Science and Technology Specialist, EPA). 2023. Email communication: Guideline variance for land applying biosolids to fields with a pH of 6.0 or greater – Revision. January 31, 2023.

³ Tetra Tech Canada Inc. July 2023. Application for Authorization to Apply Dewatered Biosolids to Marginal Lands within Sturgeon County, Alberta. File: ENW.BIOS03089-01. Application No. 639-32787-SLU.

⁴ Tetra Tech Canada Inc. September 2023. Application for Authorization to Apply Dewatered Biosolids to Marginal Lands within Strathcona County, Alberta. File: ENW.BIOS03089-01. Application No. 639-32733-SLU.

3.0 APPROVAL CONDITIONS

The following approval conditions for both Authorization No. 639-32733-SLU and Authorization No. 639-32787-SLU were adhered to during completion of the 2023 dewatered biosolids application to marginal lands:

- All dewatered biosolids were stockpiled in accordance with the Alberta Environment and Parks Draft Dewatered Biosolids Stockpiling Guidelines for stockpiles to be used within nine months of placement.
 - All stockpiles were placed on snow free ground.
 - All stockpiles were located outside of areas with standing water or depressional areas.
 - Permission letters were obtained from the landowners authorizing biosolids stockpiling on their property.
 - Dewatered biosolids stockpiles were located in a cultivated field with no exposure to domestic animals.
 - All buffer distances were maintained between the dewatered biosolids stockpiles and the features listed in the draft guidelines.
- Biosolids were applied in accordance with the Guidelines.
- Dewatered biosolids were cultivated into the soil the same day of application, or within 24 hours of application.
- No biosolids were applied to frozen or snow-covered ground (Photo 4).
- No parcels of land that received biosolids in 2023 had received biosolids within the previous three years.
- Olstad & Company only used agricultural equipment (Photos 1, 2, and 3) to spread biosolids, and therefore was
 not required to obtain written approval from any pipeline authorities. No pipelines were crossed during hauling
 and stockpiling activities.
- A minimum 30 metre (m) buffer with no biosolids application was maintained around all wetlands and no biosolids were applied to areas where periodic flooding or ponding crosses onto an adjacent landowner's property.
- All equipment was well maintained and no biosolids were deposited or spilled onto public roadways.
- No releases, spills, or discharge of biosolids into a watercourse or onto land not designated to receive biosolids occurred.

Post-application monitoring requirements included:

Sampling and analysis for Alberta Tier 1 metals for all land units where pre-application soil pH was lower than
 6.0 in the 0-30 cm depth and lime is not added to adjust pH accordingly.

4.0 BIOSOLIDS APPLICATION: AUTHORIZATION NO. 639-32733-SLU

In September 2023 dewatered biosolids were hauled to the SE 07-54-21 W4M in Strathcona County and in October 2023 dewatered biosolids were applied to SW 07-54-21 W4M and SE 07-54-21 W4M in accordance with Authorization No. 639-32733-SLU.

Olstad & Company and EPCOR did not apply biosolids to the NW 07-54-21 W4M in 2023 or 2024 due to limitations in the amount of dewatered biosolids available for application.

4.1 Landowner Information

The landowner is Chris Allam (780-777-4276). A signed acknowledgement and authorization letter from Chris Allam is attached in Appendix C.

4.2 Receiving Site Conditions

A summary of soil analytical results for the receiving site, prior to biosolids application, are provided in Table A. Within NW 07-54-21 W4M there is 20 ha which have 2-5% slopes, which make them Land Class 2, however this area did not receive biosolids in 2023. Figure 1 shows the biosolids application areas and buffer distances for Chris Allam's fields.

Table A: Marginal Lands 2020 Soil Analytical Results

Parameter	NW/SW/SE-07-54-21 W4M	NW-07-54-21 W4M
Area	125 ha (310 acres [ac])	20 ha (50 ac)
Surface pH (0-30 cm)	5.99	9
Average pH (30-100 cm)	7.16	3
Texture ¹	CL	
Slope %	<2	2-5
Depth to Potable Aquifer (m)	12.5	5
Plant Available Nitrogen (kg/ha)	145	i
Plant Available Phosphorus (kg/ha)	67	
Overall Land Class ²	1	2

¹ CL = clay loam

4.3 Biosolids Characterization and Application Rate Calculations

EPCOR collects and analyses digested biosolids samples on a regular basis throughout the year and submits them to an accredited laboratory for analysis of percent total solids, total nitrogen (Total Kjeldahl Nitrogen, TKN), ammonium nitrogen (NH₄-N), total phosphorus, and trace elements. Dewatered biosolids analytical data from a sample collected June 10, 2023 was provided to Tetra Tech by EPCOR. This data was used to calculate preliminary biosolids application rates of 19.8 dry tonnes per hectare (dt/ha) for Class 1 land, 15.4 dt/ha for Class 2 land, and 8.8 dt/ha for Class 3 land in the September 2023 Authorization Application.

In accordance with the Authorization Applications submitted to EPA, EPCOR collected and analyzed additional dewatered biosolids samples prior to application. Daily samples collected in September 2023 during dewatered biosolids production indicated an average solids content of 24.3% in the material hauled and stockpiled on the SE 07-54-21 W4M in Strathcona County (Table 1).

Olstad & Company and EPCOR also proposed to collect samples of the stockpiled biosolids prior to application, as nitrogen losses in the stockpiled biosolids were expected between the stockpiling and application dates due to volatilization and mineralization. In addition to the sample collected on September 7, 2023 while stockpiling the dewatered biosolids, a composite sample of the stockpiled material on the SE 07-54-21 W4M was collected on September 19, 2023. The two samples were analyzed for trace element, total phosphorus, TKN, NH4-N, and available sulphate parameters. Analytical results are summarized in Table 1.

² The overall land class shown is based on all classification parameters except the 0-30 cm surface pH. All marginal land fields shown have a 0-30 cm surface pH less than 6.0 and fall outside of the standard definition of agricultural lands.

The average nitrogen (TKN and NH₄-N) concentrations of the samples collected during dewatered biosolids production (September 7 sample) and from the stockpile (September 19 sample) were used to calculate a final biosolids application rate based on the maximum allowable nitrogen application rate in order to maximize the organic matter application rate to these marginal lands. Application limits based on the total solids content was not applied to these marginal lands as this had the potential to limit the amount of organic matter applied.

A final calculated maximum biosolids application rate for the marginal lands described in Authorization No. 639-32733-SLU was 30.8 dt/ha for Class 1 land, 24.0 dt/ha for Class 2 land, and 13.7 dt/ha for Class 3 land (Table 2). Total nitrogen was the most limiting parameter for determination of the biosolids application rate.

4.4 Biosolids Application Results

A summary of biosolids application details is provided in Table B. Detailed biosolids application rate details are provided in Tables 3A and 3B.

Table B: 2023 Marginal Lands Biosolids Application Site Details

	_						
Legal Location	Land Class ¹	Calculated Rate (dt/ha)	Area (ha)	Total Applied (dt)	Final Application Rate (dt/ha)	Stockpiling Dates	Application Dates
NW 07-54-21 W4M	4 (2)	-	-	0	No Biosolids Applied	Not Applicable	Not Applicable
NW 07-54-21 W4M	4 (1)	-	-	0	No Biosolids Applied	Not Applicable	Not Applicable
SW 07-54-21 W4M	4 (1)	30.8	31.5	701	22.3	Not Applicable	October 15-16, 2023
SE 07-54-21 W4M	4 (1)	30.8	39.9	888	22.3	September 6-27, 2023	October 15-16, 2023

¹ All marginal land fields are land class 4 based on a 0-30 cm surface pH less than 6.0. The overall land class shown in brackets is based on all classification parameters except the 0-30 cm surface pH and is used to determine the allowable application rate based on the nitrogen content of the biosolids.

On the SW 07-54-21 W4M and SE 07-54-21 W4M quarters where the biosolids were applied, a final application rate of 22.3 dt/ha was achieved. The application rate on this field was limited by the total amount of biosolids available for application.

Biosolids were not applied to the NW 07-54-21 W4M quarter section in 2023 or 2024 due to the limited quantity of dewatered biosolids available for application.

5.0 BIOSOLIDS APPLICATION: AUTHORIZATION NO. 639-32787-SLU

In June, July, and August 2023 dewatered biosolids were hauled to the NW 14-55-23 W4M in Sturgeon County and in October 2023 dewatered biosolids were applied to fields in the NW 14-55-23 W4M, NE 14-55-23 W4M, and SW 23-55-23 W4M in accordance with Authorization No. 639-32787-SLU.

Olstad & Company and EPCOR decided to not apply biosolids to two fields (NW 02-55-23 W4M and SW 11-55-23 W4M) in 2023 or 2024 due to Authorization Appendix Condition No. 4 requiring lime application prior to biosolids application.

5.1 Landowner Information

The landowner is Blair Nikiforuk (780-818-1028). A signed acknowledgement and authorization letter from Blair Nikiforuk is attached in Appendix C.

5.2 Receiving Site Conditions

A summary of soil analytical results for the receiving sites, prior to biosolids application, are provided in Table C. Figures 2, 3 and 4 show the biosolids application areas and buffer distances for Blair Nikiforuk's fields.

Table C: Marginal Lands 2022 Soil Analytical Results

Parameter	NW 14-55-23 W4M	NE 14-55-23 W4M	SW 23-55-23 W4M
Surface pH (0-30 cm)	5.89	5.77	5.89
Average pH (30-100 cm)	7.6	7.6	7.7
Texture ¹	CL	SL	SL
Slope %	1	<2	<2
Depth to Potable Aquifer (m)	11	11	11
Plant Available Nitrogen (kg/ha)	70	160	145
Plant Available Phosphorus (kg/ha)	40	101	116
Overall Land Class ²	1	3	3

¹ CL = clay loam, SL = sandy loam

5.3 Biosolids Characterization and Application Rate Calculations

EPCOR collects and analyses digested biosolids samples on a regular basis throughout the year and submits them to an accredited laboratory for analysis of percent total solids, total nitrogen (Total Kjeldahl Nitrogen, TKN), ammonium nitrogen (NH₄-N), total phosphorus, and trace elements. Dewatered biosolids analytical data from a sample collected June 10, 2023 was provided to Tetra Tech by EPCOR. This data was used to calculate preliminary biosolids application rates of 19.8 dry tonnes per hectare (dt/ha) for Class 1 land, 15.4 dt/ha for Class 2 land, and 8.8 dt/ha for Class 3 land in the July 2023 Authorization Application.

In accordance with the Authorization Application submitted to EPA, EPCOR collected and analyzed additional dewatered biosolids samples prior to application. Daily samples collected in June, July, and August 2023 during dewatered biosolids production indicated an average solids content of 22.6% in the material hauled and stockpiled on the NW 14-55-23 W4M in Sturgeon County (Table 4).

Olstad & Company and EPCOR also proposed to collect samples of the stockpiled biosolids prior to application, as nitrogen losses in the stockpiled biosolids were expected between the stockpiling and application dates due to volatilization and mineralization. In addition to the sample collected on July 10, 2023 during stockpiling of the dewatered biosolids, two additional composite samples were collected on October 12, 2023 from the stockpiled material on the NW 14-55-23 W4M. All samples were analyzed for trace element, total phosphorus, TKN, NH4-N, and available sulphate parameters; analytical results are summarized in Table 4.

² The overall land class shown is based on all classification parameters except the 0-30 cm surface pH. All marginal land fields shown have a 0-30 cm surface pH less than 6.0 and fall outside of the standard definition of agricultural lands.

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 24, 2025 | ISSUED FOR USE

The average nitrogen (TKN and NH₄-N) concentrations of the samples collected during dewatered biosolids production (July 10 sample) and from the stockpile (October 12 samples) were used to calculate a final biosolids application rate based on the maximum allowable nitrogen application rate in order to maximize the organic matter application rate to these marginal lands. Application limits based on the total solids content was not applied to these marginal lands as this had the potential to limit the amount of organic matter applied.

A final calculated biosolids application rate for the marginal lands described in Authorization No. 639-32787-SLU was 46.7 dt/ha for Class 1 land, 36.3 dt/ha for Class 2 land, and 20.8 dt/ha for Class 3 land (Table 5). Ammonium nitrogen was the most limiting parameter for determination of the biosolids application rate.

5.4 Biosolids Application Results

A summary of biosolids application details is provided in Table D. Detailed biosolids application rate details are provided in Tables 6A, 6B, and 6C. The equipment used and the dewatered biosolids application spread pattern is shown on Photos 1 to 4.

Table D: 2023 Marginal Lands Biosolids Application Rate Details

	_						
Legal Location	Land Class ¹	Calculated Rate (dt/ha)	Area (ha)	Total Applied (dt)	Final Application Rate (dt/ha)	Stockpiling Dates	Application Dates
NW-02-55-23 W4M	4 (1)	-	-	0	No Biosolids Applied	Not Applicable	Not Applicable
SW-11-55-23 W4M	4 (1)	-	-	0	No Biosolids Applied	Not Applicable	Not Applicable
NW-14-55-23 W4M	4 (1)	46.7	27	574	21.1	June 22 to August 28, 2023	October 18-21, 2023
NE-14-55-23 W4M	4 (3)	20.8	49	881	18.1	Not Applicable	October 18-21, 2023
SW-23-55-23 W4M	4 (3)	20.8	44	900	20.7	Not Applicable	October 18-21, 2023

¹ All marginal land fields are land class 4 based on a 0-30 cm surface pH less than 6.0. The overall land class shown in brackets is based on all classification parameters except the 0-30 cm surface pH and is used to determine the allowable application rate based on the nitrogen content of the biosolids.

On the NE 14-55-23 W4M and SW 23-55-23 W4M quarters, biosolids application rates were maximized based on the available ammonium nitrogen content of the biosolids, with rates of 18.1 dt/ha and 20.7 dt/ha applied, respectively. These application rates were used in order to maximize the amount of organic matter applied to these sandy loam textured soils.

On the NW 14-55-23 W4M quarter where the biosolids were stockpiled, a final application rate of 21.1 dt/ha was achieved. The application rate on this field was limited by the total amount of dewatered biosolids available for application.

Biosolids were not applied to the NW 02-55-23 W4M and SW 11-55-23 W4M quarter sections in 2023 or 2024. Approval condition 4 specified that these two quarters were not eligible to receive biosolids unless lime was applied prior to biosolids application. EPCOR and Olstad & Company made the decision to not apply biosolids rather than attempt to obtain a suitable supply of lime.

6.0 MONITORING PROGRAMS

6.1 Authorization No. 639-32733-SLU (Strathcona County)

As per Authorization No. 639-32733-SLU, post-application sampling and analysis for Alberta Tier 1⁶ metals in the 0-15 cm and 15-30 cm depths was conducted in 2024 in all land units where the pre-application soil pH was lower than 6.0 in the 0-30 cm depth and where dewatered biosolids were applied in 2023 (Table 7 and Figure 1). These include:

- SW 07-54-21 W4M, Land Unit 2.
- SE 07-54-21 W4M, Land Units 1, 2, and 3.

Pre-application metals data was not collected prior to biosolids application and therefore a predicted loading rate was not modeled.

Post application soil metals data is summarized in Table 8. All analyzed metal concentrations were less than their respective maximum allowable concentration (MAC; the Alberta Tier 1 guideline value) and all post application metal concentrations were less than 80% of the Tier 1 guideline except one. The selenium concentration (0.9 mg/kg) in the SE-07-54-21 W4M Land Unit 1, 15-30 cm sample was marginally greater then the 80% of MAC value of 0.8 mg/kg and likely represents the range of natural variability for selenium in the field. The 15-30 cm field average for selenium (0.6 mg/kg) was well below the 80% of MAC threshold.

The post application average concentrations of regulated metals⁷ in biosolids (arsenic, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, and zinc) are shown in Appendix D (Figures D1.As to D1.Zn) in relation to the MAC (Alberta Tier 1 guideline) and 80% of MAC values. Note that in cases where the metal concentrations were reported as less then the laboratory detections limit (e.g., <0.05 mg/kg), half of the detection limit (e.g., 0.025 mg/kg) was used to obtain a numerical average for graphing.

The application of biosolids to SW 07-54-21 W4M and SE 07-54-21 W4M field in Strathcona County did not result in metal concentrations greater than the Alberta Tier 1 Guidelines in the 0-15 cm and 15-30 cm sample depths.

6.2 Authorization No. 639-32787-SLU (Sturgeon County)

As per Authorization No. 639-32787-SLU, post-application sampling and analysis for Alberta Tier 1 metals in the 0-15 cm and 15-30 cm depths was conducted in 2024 in all land units where the pre-application soil pH was lower than 6.0 in the 0-30 cm depth and where dewatered biosolids were applied in 2023 (Table 9 and Figures 2-4). These include:

- NW 14-55-23 W4M, Land Units 1 and 2.
- NE 14-55-23 W4M, Land Units 2, 3, and 4.
- SW 23-55-23 W4M, Land Units 1, 2, and 3.

⁷ Regulated metals under *draft* AEPA Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands.

⁶ Alberta Environment and Protected Areas (AEPA). 2024. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. AEPA, Lands Policy, 2024, No. 1.

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 24, 2025 | ISSUED FOR USE

Pre-application soil metals data was collected in 2022 (Table 10). Preliminary trace element (metals) loading modelling data provided in Application No 639-32787-SLU⁸ indicated that the application of dewatered biosolids to these marginal lands would not result in the regulated metal concentrations exceeding the MAC (Alberta Tier 1 guideline value) or 80% of MAC threshold. Prior to application in fall 2023, the stockpiled biosolids were analyzed (Table 4) and a revised allowable application rate calculated. The predicated loading rate model was also updated prior to application, confirming that the increased application rates would not result in the regulated metal concentrations exceeding the MAC or 80% of MAC thresholds.

Post application, the stockpiled biosolids metals data and final (actual) application rate data was used to model the final metals loading rate for each field (Tables 11A-11C). For all three fields, the calculated metals loading rate was below the MAC and 80% or MAC thresholds.

Post application soil metals data is summarized in Table 12. All analyzed metal concentrations were less than their respective MAC (the Alberta Tier 1 guideline value) and all post application metal concentrations were less than 80% of the Tier 1 guideline except one. The selenium concentration (0.9 mg/kg) in the NE-14-55-23 W4M Land Unit 4, 0-15 cm sample was marginally greater then the 80% of MAC value of 0.8 mg/kg and likely represents the range of natural variability for selenium in the field. The 0-15 cm field average for selenium (0.7 mg/kg) was well below the 80% of MAC threshold.

The post application average concentrations of regulated metals in biosolids are shown in Appendix D (Figures D2.As to D2.Zn) in relation to the MAC and 80% of MAC values. For the regulated metals arsenic, cadmium, chromium, cobalt, copper, lead, nickel, and zinc, the post-application regulated metal concentrations were equivalent to or lower than the pre-application concentrations and lower than the predicted loading concentration. For mercury and molybdenum, the post-application concentrations appear to have increased relative to the pre-application concentrations, but results were reported as less then the laboratory detections limit (e.g., <0.05 mg/kg) and half of the detection limit (e.g., 0.025 mg/kg) was used for graphing purposes. There is no indication that mercury and molybdenum concentrations have increased as a result of biosolids application. For selenium, the post-application concentrations were lower than the pre-application concentrations and lower than the predicted loading concentration in the NE-14 and SW-23 fields. In the NW-14 field, the post-application selenium concentrations were slightly higher than the pre-application concentration but well below the MAC and 80% of MAC values, and are likely representative of the range of natural variability within the field.

The application of biosolids to NW 14-55-23 W4M, NE 14-55-23 W4M, and SW 23-55-23 W4M fields in Sturgeon County did not result in metal concentrations greater than the Alberta Tier 1 Guidelines in the 0-15 cm and 15-30 cm sample depths.

⁸ Tetra Tech Canada Inc. July 2023. Application for Authorization to Apply Dewatered Biosolids to Marginal Lands within Sturgeon County, Alberta. File: ENW.BIOS03089-01. Application No. 639-32787-SLU.

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 24, 2025 | ISSUED FOR USE

7.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Olstad & Company Ltd., EPCOR Water Services Inc., and their agents. Tetra Tech Canada Inc. (operating as Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Olstad & Company Ltd. and EPCOR Water Services Inc., or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in Appendix A or Contractual Terms and Conditions executed by both parties.

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS
FILE: ENW.BIOS03089-02 | FEBRUARY 24, 2025 | ISSUED FOR USE

8.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

> FILE: ENW.BIOS03089-02 FILE: ENW.BIOS03089-02 FILE: ENW.BIOS03089-02

Prepared by: Alexandra Copan, B.Sc., B.I.T. Environmental Scientist Environment & Water Practice Direct Line: 587.594.2654 Alex.Copan@tetratech.com

/ces

Reviewed by:
Mark Fawcett, P.Ag.
Senior Soil Scientist
Environment & Water Practice
Direct Line: 780.818.6352
Mark.Fawcett@tetratech.com

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 2025 | ISSUED FOR USE

TABLES

Dewatered Biosolids Laboratory Analysis - 2023 Application Year - SW/SE 07-54-21 W4M
Municipal Biosolids Application Rate Calculations Worksheet - SW/SE 07-54-21 W4M
Dewatered Biosolids Application Results - 2023 Application Year - SW 07-54-21 W4M
Dewatered Biosolids Application Results - 2023 Application Year - SE 07-54-21 W4M
Dewatered Biosolids Laboratory Analysis - 2023 Application Year - NW/NE 14-55-23 W4M and SW 23-55-23 W4M
Municipal Biosolids Application Rate Calculations Worksheet - NW/NE 14-55-23 W4M and SW 23-55-23 W4M
Dewatered Biosolids Application Results - 2023 Application Year - NW 14-55-23 W4M
Dewatered Biosolids Application Results - 2023 Application Year - NE 14-55-23 W4M
Dewatered Biosolids Application Results - 2023 Application Year - SW 23-55-23 W4M
Pre-Application Soil Analytical Results – pH – Authorization No. 639-32733-SLU
2024 Soil Analytical Results – Post Application Alberta Tier 1 Metals – Authorization No. 639-32733-SLU
Pre-Application Soil Analytical Results – pH – Authorization No. 639-32787-SLU
Pre-Application Soil Analytical Results – Alberta Tier 1 Metals – Authorization No. 639-32787-SLU
Municipal Biosolids Trace Element (Metals) Post Application Modelling Calculations – NW-14-55-23 W4M
Municipal Biosolids Trace Element (Metals) Post Application Modelling Calculations – NE-14-55-23 W4M
Municipal Biosolids Trace Element (Metals) Post Application Modelling Calculations – SW-23-55-23 W4M
2024 Soil Analytical Results – Post Application Alberta Tier 1 Metals – Authorization No. 639-32787-SLU

Table 1: Dewatered Biosolids Laboratory Analysis - 2023 Application Year - SW/SE 07-54-21 W4M

Lab ID	Date 2023 Analytical	Average Solids Concentration	Al ²	Sb ²	As ²	Ba ²	Be ²	Sat Paste B ²	Cd ²	Cr ²	Co²	Cu²	Fe ²	Pb ²	Mn ²	Mo²	Ni ²	Se ²	Ag ²	Sr ²	Tl²	Sn ²	Ti²	V ²	Zn²	Hg²	K ²	Total Phosphorus ² mg/kg	Total Kjeldahl Nitrogen ² (excluding NO ₃ - N)	Ammonium Nitrogen (NH4-N) ² mg/kg	Available Sulphate ² mg/kg
					mg/kg			mg/L										mg/kg											mg/kg	99	
GB-23-11216	September 7th, 2023	24.3 ¹	9,480	2.6	4.7	308	0.3	<0.5	4.41	141	7.1	416 1	15,800	51.4	380	13.0	40.1	6.9	13.1	209	0.12	19.5	42.0	16.3	794	1.36	2,600	35900	23100	6300	2,520
GB-23-11578	September 19,2023	24.8	7,930	3.0	5.2	416	0.3	<0.5	4.64	127	6.2	508 1	13,100	53.3	300	16.1	36.6	6.6	14.2	241	0.12	25.7	49.7	16.5	902	1.77	2,400	23600	35300	6070	2,400
	Average ³	NA	8,705	2.8	5.0	362	0.3	0.5	4.53	134	6.7	462 1	14,450	52.4	340	14.6	38.4	6.8	13.7	225	0.12	22.6	45.9	16.4	848	1.57	2,500	29750	29200	6185	2,460
	Minimum	NA	7,930	2.6	4.7	308	0.3	<0.5	4.41	127	6.2	416 1	13,100	51.4	300	13.0	36.6	6.6	13.1	209	0.12	19.5	42.0	16.3	794	1.36	2,400	23600	23100	6070	2,400
	Maximum	NA	9,480	3.0	5.2	416	0.3	<0.5	4.64	141	7.1	508 1	15,800	53.3	380	16.1	40.1	6.9	14.2	241	0.12	25.7	49.7	16.5	902	1.77	2,600	35900	35300	6300	2,520
	Standard Deviation	NA	1,096	0.3	0.4	76	0.0	NA	0.16	10	0.6	65	1,909	1.3	57	2.2	2.5	0.2	0.8	23	0.00	4.4	5.4	0.1	76	0.29	141	8697	8627	163	85

The data was collected in 2023 and used to determine the application rates for 2023.

¹ Concentrations are the percent solids results after the daily field samples have been composited.

 $^{^{2}}$ Data presented as per the laboratory results. Reported concentrations are with respect to Dry Weight

³ The detection limit was used to calculate the average for values reported less than the detection limit. NA - Not Applicable.

Table 2: Municipal Biosolids Application Rate Calculations Worksheet - SW/SE 07-54-21 W4M

MUNICIPAL BIOSOLIDS QUALITY REPORT*

Biosolids Data ¹	Average (%)	
Solids %	24.3	Average solids content of the dewatered biosolids transported to the Strathcona County fields.
Total Nitrogen % ²	2.92	Total witnesses assessmines witnesses total whose every and westell assessment in the every
Ammonium Nitrogen %	0.62	 Total nitrogen, ammonium nitrogen, total phosporous, and metal concentrations are an average September 7, 2023 and September 19, 2023 samples of stockpiled dewatered biosolids.
Total Phosphorus %	2.98	Ochtember 7, 2020 and Ochtember 13, 2023 samples of stockhilled dewatered biosolids.

Total nitrogen, ammonium nitrogen, total phosporous, and metal concentrations are an average of the September 7, 2023 and September 19, 2023 samples of stockpiled dewatered biosolids.

Notes:

- Dewatered biosolids analytical data provided by EPCOR.
- ² Total Kjeldahl Nitrogen (TKN).
- * The Quality Report is taken from Alberta Environment (AENV) 2001 Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands, Page 27.

Metal Concentration	Average	N	itrogen Calculations		Phosphore	us Calculatio	ns
in Biosolids	Biosolids Data	Calculations ¹	Guide	Difference ⁵	Calculations ¹	Guide	Difference ⁵
III Diosolius	(µg/g)	N:metal Ratio ³	Minimum ²	Dillerence	P:metal Ratio⁴	Minimum ²	Dillerence
Cd	4.53	6,446	1,500	4,946	6,567	600	5,967
Cr	134	218	20	198	222	8	214
Cu	462	63	15	48	64.4	6	58.4
Pb	52.4	557	20	537	568	8	560
Hg	1.57	18,599	3,000	15,599	18,949	1,100	17,849
Ni	38.4	760	100	660	775	40	735
Zn	848	34	10	24	35.1	4	31.1

Notes:

MUNICIPAL BIOSOLIDS PARAMETERS LIMITING APPLICATION RATE

Parameter ¹	Calculation Formula ^{2,3}	CLASS 1 - Digested⁴	Calculation Formula ^{2,3}	CLASS 2 - Digested ⁴	Calculation Formula ^{2,3}	CLASS 3 - Digested ⁴
Solids		25		20		10
Total N	90/total N (%)	30.8	70/total N (%)	24.0	40/total N (%)	13.7
NH₄-N (Injected)	20/NH ₄ -N (%) ⁵	32.3	20/NH ₄ -N (%) ⁵	32.3	15/NH ₄ -N (%) ⁵	24.3
NH₄-N (Surface)	45/NH ₄ -N (%) ⁵	72.8	35/NH ₄ -N (%) ⁵	56.6	20/NH ₄ -N (%) ⁵	32.3
Cd	1,500/[3*Cd(µg/g)]	110	1,100/[3*Cd(µg/g)]	81	800/[3*Cd(µg/g)]	59
Cr	100,000/[3*Cr (μg/g)]	249	75,000/[3*Cr (µg/g)]	187	50,000/[3*Cr (μg/g)]	124
Cu	200,000/[3*Cu (μg/g)]	144	150,000/[3*Cu (µg/g)]	108	100,000/[3*Cu (μg/g)]	72.2
Pb	100,000/[3*Pb (μg/g)]	636	75,000/[3*Pb (µg/g)]	477	50,000/[3*Pb (μg/g)]	318
Hg	500/[3*Hg (μg/g)]	106	400/[3*Hg (μg/g)]	85	200/[3*Hg (μg/g)]	42.5
Ni	25,000/[3*Ni (µg/g)]	217	19,000/[3*Ni (μg/g)]	165	12,000/[3*Ni (µg/g)]	104
Zn	300,000/[3*Zn (μg/g)]	118	200,000/[3*Zn (μg/g)]	79	150,000/[3*Zn (μg/g)]	59.0
Rate (t/ha)		30.8		24.0		13.7
Parameter Most Limiting ⁶		Total N		Total N		Total N

¹ N/metal ratio = [Total N (%) *10,000]/metal (μ g/g) or P/metal ratio = [Total P (%) *10,000]/metal (μ g/g).

² The Guide Minimums are stipulated in Table 1 of the 2001 AENV Wastewater Guidelines (page 17). Biosolids is unacceptable if either the nitrogen or phosphorus criterion is not met. Spiking biosolids with nitrogen or phosphorus to achieve these ratios is not permitted.

³ N:metal ratio is calculated as the total Nitrogen % in the biosolids divided by the metal concentration.

⁴ P:metal ratio is calculated as the total phosphorus % in the biosolids divided by the metal concentration.

⁵ The difference value is the guide minimum subtracted from the recorded ratio for either nitrogen or phosphorus.

¹ The parameter is the name that is given to each row (i.e., solids, total N) and the name that is used to indicate which row is the most limiting.

² The calculation formulae for digested waste are taken from AENV 2001 Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands, Page 28.

³ Note that the laboratory reports metal analysis in units of mg/kg, which is the same as µg/g.

⁴ The class relates to the site classification status where Class 1 is the most suitable, Class 2 the second most suitable, Class 3 more suitable than Class 4, and Class 4 is not at all suitable (fail).

⁵ The AENV 2001 Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands, Page 28 show the units for NH₄-N as μg/g. This is incorrect, units are NH₄-N(%) as shown in this table.

⁶ The most limiting parameter relates to the lowest value for each class number and is calculated as per the given formula.

2023 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-01 | FEBRUARY 2024 | ISSUED FOR USE

Table 3A: Dewatered Biosolids Application Results - 2023 Application Year - SW 07-54-21 W4M

Authorizati	on No. 63	9-32733-SLl			Loading Rate)	Biosolids	Field L	oading.		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Acres	Hectares	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
2883	24.3	701	77.8	31.5	22.3	TP	29750	20863	663				
						TN	29200	20477	650				
						NH3-N	6185	4337	138				
Landowner		Chris Allam				As	5.0	3.51	0.111				
Legal Descrip	otion	SW 07-54-21	W4M			Cd	4.53	3.18	0.101	6446	1500	6567	600
Stockpiling D	ate	September 6-	27, 2023	}		Cr	134	94.0	2.98	218	20	222	8
Application D	ate	October 15-1	6, 2023			Co	6.7	4.7	0.1				
Soil Class		1				Cu	462	324	10.29	63	15	64	6
Biosolids Typ	е	Digested, Cer	ntrifudge	Dewatered		Pb	52.4	36.7	1.167	557	20	568	8
						Mn	340	238	7.57				
Biosolids San	nple	GB-23-11216	- Septer	mber 7, 202	23	Hg	1.57	1.101	0.035	18599	3000	18949	1100
		GB-23-11578	- Septer	nber 19, 20)23	Ni	38.4	26.9	0.855	760	100	775	40
						Se	6.8	4.77	0.151				
						Zn	848	595	18.9	34	10	35	4

Note: The numbers shown may not add up due to rounding.

Table 3B: Dewatered Biosolids Application Results - 2023 Application Year - SE 07-54-21 W4M

Authorizat	ion No. 63	9-32733-SLl			Loading Rate	;	Biosolids	Field L	oading.		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Acres	Hectares	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
3652	24.3	888	98.6	39.9	22.3	TP	29750	26427	663				
						TN	29200	25939	650				
						NH3-N	6185	5494	138				
Landowner		Chris Allam				As	5.0	4.44	0.111				
Legal Descrip	otion	SE 07-54-21	W4M			Cd	4.53	4.02	0.101	6446	1500	6567	600
Stockpiling D	ate	September 6-	27, 2023	}		Cr	134	119.0	2.98	218	20	222	8
Application D	ate	October 15-1	6, 2023			Co	6.7	6.0	0.1				
Soil Class		1				Cu	462	410	10.29	63	15	64	6
Biosolids Typ	e	Digested, Cer	ntrifudge	Dewatered	İ	Pb	52.4	46.5	1.167	557	20	568	8
						Mn	340	302	7.57				
Biosolids Sar	nple	GB-23-11216	- Septer	mber 7, 202	23	Hg	1.57	1.395	0.035	18599	3000	18949	1100
		GB-23-11578	- Septer	mber 19, 20)23	Ni	38.4	34.1	0.855	760	100	775	40
						Se	6.8	6.04	0.151				
						Zn	848	753	18.9	34	10	35	4

Note: The numbers shown may not add up due to rounding.

Table 4: Dewatered Biosolids Laboratory Analysis - 2023 Application Year - NW/NE 14-55-23 W4M and SW 23-55-23 W4M

Lab ID	Date 2023 Analytical	Average Solids Concentration	Al ²	Sb ²	As ²	Ba ²	Be ²	Sat Paste B ²	Cd ²	Cr ²	Co ²	Cu ²	Fe ²	Pb ²	Mn²	Mo²	Ni ²	Se ²	Ag²	Sr ²	Tl ²	Sn²	Ti²	V²	Zn²	Hg²	K²	Total Phosphorus ² mg/kg	Total Kjeldahl Nitrogen ² (excluding NO ₃ - N)	(NH4-N)	Available Sulphate ² mg/kg
					mg/kg			mg/L										mg/kg											mg/kg	mg/kg	
GB-23-08795	July 10th, 2023	22.6 ¹	10,200	3.0	5.4	350	0.3	<0.5	5.31	121	6.6	468.0	15,900	52.8	350	15.5	38.1	7.2	13.1	223	0.13	27.2	40.2	16.6	902	1.4	3,400	29400	12500	7810	608
GB-23-12256	October 12, 2023	16.5	8,190	2.5	5.1	333	0.3	<0.5	3.13	60.7	6.3	443	14,700	33.7	310	14.3	36.7	6.9	7.4	192	0.13	21.9	43.2	16.0	809	1.09	2,800	24500	11500	10100	299
GB-23-12257	October 12, 2023	16.3	7,570	2.6	4.8	314	0.2	<0.5	3.11	61.0	6.1	457	13,300	33.1	290	15.1	36.9	7.0	6.9	197	0.12	23.8	39.4	14.7	853	1.14	2,900	24900	11500	11000	750
	Average ³	NA	8,653	2.7	5.1	332	0.3	0.5	3.85	81	6.3	456	14,633	39.9	317	15.0	37.2	7.0	9.1	204	0.13	24.3	40.9	15.8	855	1.22	3,033	26267	11833	9637	552
	Minimum	NA	7,570	2.5	4.8	314	0.2	<0.5	3.11	61	6.1	443	13,300	33.1	290	14.3	36.7	6.9	6.9	192	0.12	21.9	39.4	14.7	809	1.09	2,800	24500	11500	7810	299
	Maximum	NA	10,200	3.0	5.4	350	0.3	<0.5	5.31	121	6.6	468	15,900	52.8	350	15.5	38.1	7.2	13.1	223	0.13	27.2	43.2	16.6	902	1.42	3,400	29400	12500	11000	750
	Standard Deviation	NA	1,375	0.3	0.3	18	0.1	NA	1.26	35	0.3	13	1,301	11.2	31	0.6	0.8	0.2	3.4	17	0.01	2.7	2.0	1.0	47	0.18	321	2721	577	1645	231

The data was collected in 2023 and used to determine the application rates for 2023.

¹ Concentrations are the percent solids results after the daily field samples have been composited.

 $^{^{2}}$ Data presented as per the laboratory results. Reported concentrations are with respect to Dry Weight

³ The detection limit was used to calculate the average for values reported less than the detection limit. NA - Not Applicable.

Table 5: Municipal Biosolids Application Rate Calculations Worksheet - NW/NE 14-55-23 W4M and SW 23-55-23 W4M

MUNICIPAL BIOSOLIDS QUALITY REPORT*

Biosolids Data ¹	Average (%)
Solids %	22.6
Total Nitrogen % ²	1.18
Ammonium Nitrogen %	0.96
Total Phosphorus %	2.63

Average solids content of the dewatered biosolids transported to the Sturgeon County fields

Total nitrogen, ammonium nitrogen, total phosporous, and metal concentrations are an average of the July 10, 2023 and October 12, 2023 samples of stockpiled dewatered biosolids

Notes:

- Dewatered biosolids analytical data provided by EPCOR.
- ² Total Kjeldahl Nitrogen (TKN).
- * The Quality Report is taken from Alberta Environment (AENV) 2001 Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands, Page 27.

Motel Concentration	Average	N	itrogen Calculations		Phosphor	us Calculatio	ns
Metal Concentration in Biosolids	Biosolids Data	Calculations ¹	Guide	Difference ⁵	Calculations ¹	Guide	D:#*5
iii biosolius	(µg/g)	N:metal Ratio ³	Minimum ²	Difference	P:metal Ratio⁴	Minimum ²	Difference ⁵
Cd	3.85	3,074	1,500	1,574	6,823	600	6,223
Cr	81.0	146	20	126	324	8	316
Cu	456	26	15	11	57.6	6	51.6
Pb	39.9	297	20	277	658	8	650
Hg	1.22	9,699	3,000	6,699	21,530	1,100	20,430
Ni	37.2	318	100	218	706	40	666
Zn	855	14	10	4	30.7	4	26.7

Notes:

MUNICIPAL BIOSOLIDS PARAMETERS LIMITING APPLICATION RATE

Parameter ¹	Calculation Formula ^{2,3}	CLASS 1 - Digested ⁴	Calculation Formula ^{2,3}	CLASS 2 - Digested ⁴	Calculation Formula ^{2,3}	CLASS 3 - Digested ⁴
Solids		25		20		10
Total N	90/total N (%)	76.1	70/total N (%)	59.2	40/total N (%)	33.8
NH ₄ -N (Injected)	20/NH ₄ -N (%) ⁵	20.8	20/NH ₄ -N (%) ⁵	20.8	15/NH ₄ -N (%) ⁵	15.6
NH₄-N (Surface)	45/NH ₄ -N (%) ⁵	46.7	35/NH ₄ -N (%) ⁵	36.3	20/NH ₄ -N (%) ⁵	20.8
Cd	1,500/[3*Cd(µg/g)]	130	1,100/[3*Cd(µg/g)]	95	800/[3*Cd(µg/g)]	69
Cr	100,000/[3*Cr (μg/g)]	412	75,000/[3*Cr (µg/g)]	309	50,000/[3*Cr (μg/g)]	206
Cu	200,000/[3*Cu (μg/g)]	146	150,000/[3*Cu (µg/g)]	110	100,000/[3*Cu (μg/g)]	73.1
Pb	100,000/[3*Pb (μg/g)]	835	75,000/[3*Pb (μg/g)]	627	50,000/[3*Pb (μg/g)]	418
Hg	500/[3*Hg (μg/g)]	137	400/[3*Hg (μg/g)]	109	200/[3*Hg (μg/g)]	54.6
Ni	25,000/[3*Ni (μg/g)]	224	19,000/[3*Ni (μg/g)]	170	12,000/[3*Ni (µg/g)]	108
Zn	300,000/[3*Zn (μg/g)]	117	200,000/[3*Zn (μg/g)]	78	150,000/[3*Zn (μg/g)]	58.5
Rate (t/ha)		46.7		36.3		20.8
Parameter Most Limiting ⁶		NH4-N		NH4-N		NH4-N

¹ N/metal ratio = [Total N (%) *10,000]/metal (μg/g) or P/metal ratio = [Total P (%) *10,000]/metal (μg/g).

² The Guide Minimums are stipulated in Table 1 of the 2001 AENV Wastewater Guidelines (page 17). Biosolids is unacceptable if either the nitrogen or phosphorus criterion is not met. Spiking biosolids with nitrogen or phosphorus to achieve these ratios is not permitted.

³ N:metal ratio is calculated as the total Nitrogen % in the biosolids divided by the metal concentration.

⁴ P:metal ratio is calculated as the total phosphorus % in the biosolids divided by the metal concentration.

⁵ The difference value is the guide minimum subtracted from the recorded ratio for either nitrogen or phosphorus.

¹ The parameter is the name that is given to each row (i.e., solids, total N) and the name that is used to indicate which row is the most limiting.

²The calculation formulae for digested waste are taken from AENV 2001 Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands, Page 28.

 $^{^3}$ Note that the laboratory reports metal analysis in units of mg/kg, which is the same as μ g/g.

⁴ The class relates to the site classification status where Class 1 is the most suitable, Class 2 the second most suitable, Class 3 more suitable than Class 4, and Class 4 is not at all suitable (fail).

⁵ The AENV 2001 Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands, Page 28 show the units for NH₄-N as μg/g. This is incorrect, units are NH₄-N(%) as shown in this table.

⁶ The most limiting parameter relates to the lowest value for each class number and is calculated as per the given formula.

Table 6A: Dewatered Biosolids Application Results - 2023 Application Year - NW 14-55-23 W4M

Authorizati	on No. 63	9-32787-SLU			Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Acres	Hectares	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
2541	22.6	574	67	27	21.1	TP	26267	15086	554				
						TN	11833	6796	250				
						NH3-N	9637	5535	203				
Landowner		Blair Nikiforuk	(As	5.1	2.9	0.1				
Legal Descrip	otion	NW 14-55-23	W4M			Cd	3.85	2.21	0.08	3074	1500	6823	600
Stockpiling Da	ate	June 22 - Aug	just 28, 2	2023		Cr	81.0	46.5	1.7	146	20	324	8
Application D	ate	October 18-2	1, 2023			Co	6.3	3.6	0.1				
Soil Class		1				Cu	456	262	10	26	15	58	6
Biosolids Typ	е	Digested, Cer	ntrifudge	Dewatered	l	Pb	39.9	22.9	0.8	297	20	658	8
			_			Mn	317	182	7				
Biosolids San	nple	GB-23-08795	- July 10), 2023		Hg	1.22	0.70	0.03	9699	3000	21530	1100
		GB-23-12256	- Octobe	er 12, 2023		Ni	37.2	21.4	0.8	318	100	706	40
		GB-23-12257	- Octob	er 12, 2023		Se	7.0	4.0	0.1				
						Zn	855	491	18	14	40	31	4

Note: The numbers shown may not add up due to rounding.

Table 6B: Dewatered Biosolids Application Results - 2023 Application Year - NE 14-55-23 W4M

Authorizati	on No. 63	9-32787-SLU			Loading Rate		Biosolids	Field L	oading		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Acres	Hectares	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
3898	22.6	881	120	49	18.1	TP	26267	23141	476				
						TN	11833	10425	215				
						NH3-N	9637	8490	175				
Landowner		Blair Nikiforuk				As	5.1	4.5	0.1				
Legal Descrip	otion	NE 14-55-23	W4M			Cd	3.85	3.39	0.07	3074	1500	6823	600
Stockpiling D	ate	June 22 - Aug	just 28, 2	2023		Cr	81.0	71.4	1.5	146	20	324	8
Application D	ate	October 18-2	1, 2023			Co	6.3	5.6	0.1				
Soil Class		3				Cu	456	402	8	26	15	58	6
Biosolids Typ	е	Digested, Cer	ntrifudge	Dewatered	l	Pb	39.9	35.2	0.7	297	20	658	8
						Mn	317	279	6				
Biosolids San	nple	GB-23-08795	- July 10), 2023		Hg	1.22	1.07	0.02	9699	3000	21530	1100
		GB-23-12256	- Octobe	er 12, 2023		Ni	37.2	32.8	0.7	318	100	706	40
		GB-23-12257	- Octob	er 12, 2023		Se	7.0	6.2	0.1				
						Zn	855	753	16	14	10	31	4

Note: The numbers shown may not add up due to rounding.

Table 6C: Dewatered Biosolids Application Results - 2023 Application Year - SW 23-55-23 W4M

Authorizati	ion No. 63	9-32787-SLU			Loading Rate		Biosolids	Field L	oading.		Minimum		Minimum
Wet Tonnes	Ave. %TS	Dry Tonnes	Acres	Hectares	Tonnes/Ha	Substance	mg/Kg	Kg	Kg/Ha	N/TE	N/TE Ratio	P/TE	P/TE Ratio
3984	22.6	900	108	44	20.7	TP	26267	23652	543				
						TN	11833	10655	245				
						NH3-N	9637	8678	199				
Landowner		Blair Nikiforuk	(As	5.1	4.6	0.1				
Legal Descrip	otion	SW 23-55-23	W4M			Cd	3.85	3.47	0.08	3074	1500	6823	600
Stockpiling D	ate	June 22 - Aug	2023		Cr	81.0	72.9	1.7	146	20	324	8	
Application D	ate	October 18-2			Co	6.3	5.7	0.1					
Soil Class		3				Cu	456	411	9	26	15	58	6
Biosolids Typ	е	Digested, Cer	ntrifudge	Dewatered	l	Pb	39.9	35.9	8.0	297	20	658	8
						Mn	317	285	7				
Biosolids San	nple	GB-23-08795	- July 10), 2023		Hg	1.22	1.10	0.03	9699	3000	21530	1100
		GB-23-12256	er 12, 2023		Ni	37.2	33.5	8.0	318	100	706	40	
		GB-23-12257	- Octob	er 12, 2023		Se	7.0	6.3	0.1				
						Zn	855	770	18	14	10	31	4

Note: The numbers shown may not add up due to rounding.

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02

Table 7: Pre-Application Soil Analytical Results - pH - Authorization No. 639-32733-SLU

Land Unit	Sample Depth (cm)	pH ¹	Land Unit Average
ceiving Site: SW-0	7-54-21-W4		
LU 1	0-15	6.68	6.76
LUT	15-30	6.83	0.70
LU 2	0-15	5.58	5.92
LU Z	15-30	6.25	5.92
LU 3	0-15	5.65	6.12
LU 3	15-30	6.58	0.12
Surface pH	(0-30 cm average)	6.26	
eiving Site: SE-07	7-54-21-W4 0-15	5.28	
LU 1	15-30	5.65	5.47
1110	0-15	5.15	5.07
LU 2	15-30	5.58	5.37
1110	0-15	5.45	5.75
LU 3	15-30	6.04	5.75
	(0-30 cm average)		

Notes:

BOLD - soil pH is lower than 6.0 in the 0-30 cm depth

¹ Tetra Tech Canada Inc. 2023. Application for Authorization to Apply Dewatered Biosolids to Marginal Lands within Strathcona County, Alberta. File: ENW.BIOS03089-01.

Table 8: 2024 Soil Analytical Results - Post Application Alberta Tier 1 Metals - Authorization No. 639-32733-SLU

Table 0. 20	124 Juli Alla	ıytıcai Resuli	13 - FUSI AP	pilicatio	II Albeit	a Hel I	Mictais .	- Autiloi	ization	10. 039	-32/33-0	LU										
			Parameter	Antimony	Arsenic ²	Barium	Beryllium	Cadmium ²	Chromium ²	Cobalt ²	Copper 2	Lead ²	Mercury ²	Molybdenum	Nickel ²	Selenium ²	Silver	Thallium	Tin	Uranium	Vanadium	Zinc ²
			Unit		•				•				mg/kg								•	
		er 1 Guideline ¹ owable Concen		20	17	750	5	1.4	64	20	63	70	6.6	4.0	45	1.0	20	1.0	5.0	23	130	250
			80% of MAC	16.0	13.6	600.0	4.0	1.12	51.2	16.0	50.4	56.0	5.28	3.2	36.0	8.0	16.0	0.8	4.0	18.4	104.0	200.0
Land Unit	Sample Depth (cm)	Laboratory Sample ID	Sample Date																			
Receiving S	Site: SW-07-	54-21-W4																				
	0-15	1773460 - 1	31/10/2024	0.3	5.4	139	0.5	0.29	15.5	7.6	20	8.7	<0.05	<1.0	20.1	0.6	0.1	0.15	<1.0	2.4	25.3	71
LU 2				0.2	5.5	130	0.5	0.27	14.9	8.1	17	8.3	<0.05	<1.0	20.4	0.6	0.1	0.14	<1.0	2.6	23.9	67
Receiving S	Site: SE-07-5	54-21-W4																				
LU 1	0-15	1773459 - 1	31/10/2024	0.2	5.4	173	0.6	0.31	15.3	7.2	19	9.7	<0.05	<1.0	18.5	0.7	0.1	0.13	<1.0	1.1	27.4	72
LO 1	15-30	1773459 - 2	31/10/2024	0.2	5.7	192	0.7	0.28	17.0	7.4	18	10.3	<0.05	<1.0	20.0	0.9	0.1	0.15	<1.0	1.1	30.1	78
LU 2	0-15	1773459 - 3	31/10/2024	0.2	5.0	160	0.6	0.27	13.5	6.8	15	8.3	<0.05	<1.0	17.3	0.4	0.1	0.11	<1.0	1.1	22.9	55
	15-30	1773459 - 4	31/10/2024	<0.2	5.2	152	0.5	0.17	13.5	7.2	13	7.8	<0.05	<1.0	17.1	0.4	0.1	0.12	<1.0	0.9	23.4	54
LU 3	U.3 0-15 1773459 - 5 31/10/2024		31/10/2024	0.2	5.7	153	0.6	0.24	13.9	7.3	18	11.3	<0.05	<1.0	17.5	0.5	<0.1	0.13	<1.0	1.1	24.6	60
	15-30 1773459 - 6 31/10/2024				5.8	134	0.5	0.17	14.3	6.7	13	7.9	<0.05	<1.0	17.6	0.5	<0.1	0.11	<1.0	8.0	20.7	52
		verage		0.2	5.4	162.0	0.6	0.27	14.2	7.1	17.3	9.8	<0.05	<1.0	17.8	0.5	0.1	0.1	<1.0	1.1	25.0	62.3
	15-30 /	Average		0.2	5.6	159.3	0.6	0.21	14.9	7.1	14.7	8.7	<0.05	<1.0	18.2	0.6	0.1	0.1	<1.0	0.9	24.7	61.3

BOLD - Greater than Tier 1 Agricultural Guideline

BOLD - Greater than MAC (80% of Tier 1) Threshold

Italicized - Average concentration equals laboratory detection limit.

¹ Alberta Environment and Protected Areas (AEPA). 2024. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. AEPA, Lands Policy, 2024, No. 1. Referenced guidelines are for fine and coarse textured soils under Agricultural land use.

² Regulated metals under *draft* AEPA Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands.

Table 9: Pre-Application Soil Analytical Results - pH - Authorization No. 639-32787-SLU

Land Unit	Sample Depth (cm)	pH ²	Land Unit Average
eceiving Site: NW-14			
LU 1	0-15	5.45	5.84
	15-30	6.22	0.0 .
LU 2	0-15	5.53	5.94
	15-30	6.35	0.04
Surface pH (0-30 cm average)	5.89	
ceiving Site: NE-14			1
LU 1	0-15	5.84	6.39
-	15-30	6.93	
LU 2	0-15	4.99	5.24
	15-30	5.48	0.2.
LU 3	0-15	5.39	5,79
200	15-30	6.18	0.70
LU 4	0-15	5.22	5.66
LO 4	15-30	6.09	3.00
Surface pH (0-30 cm average)	5.77	
eceiving Site: SW-23	3-55-23-W4		
	0-15	5.25	5.07
LU 1	15-30	5.48	5.37
1110	0-15	5.28	F 04
LU 2	15-30	5.93	5.61
1112	0-15	5.48	5.07
LU 3	15-30	5.86	5.67
111.4	0-15	6.82	0.00
LU 4	15-30	7.02	6.92
Surface pH (0-30 cm average)	5.89	

BOLD - soil pH is lower than 6.0 in the 0-30 cm depth

² Tetra Tech Canada Inc. 2023. Application for Authorization to Apply Dewatered Biosolids to Marginal Lands within Sturgeon County, Alberta. File: ENW.BIOS03089-01.

Table 10: P	re-Applicati	on Soil Anal	lytical Resu	lts° - All	perta Tie	er 1 Met	<u>als' - Αι</u>	ıthorizat	ion No.	639-327	<u> 787-SLU</u>											
			Parameter	Antimony	Arsenic ²	Barium	Beryllium	Cadmium ²	Chromium ²	Cobalt ²	Copper ²	Lead ²	Mercury ²	Molybdenum ²	Nickel ²	Selenium ²	Silver	Thallium	Тi	Uranium	Vanadium	Zinc ²
			Unit										mg/kg									
		er 1 Guideline ¹ wable Concen		20	17	750	5	1.4	64	20	63	70	6.6	4.0	45	1.0	20	1.0	5.0	23	130	250
			80% of MAC	16.0	13.6	600.0	4.0	1.12	51.2	16.0	50.4	56.0	5.28	3.2	36.0	0.8	16.0	0.8	4.0	18.4	104.0	200.0
Land Unit	Sample Depth (m)	Sample Date	Laboratory Sample ID																			
Receiving S	Site: NW-14-	55-23 W4M																				
LU 1	0-15 cm	17-Nov-2022	EO2210209-001	0.14	5.42	151	0.52	0.258	18.3	7.37	16.7	9.08	0.0231	0.56	17.9	0.58	<0.10	0.11	<2.0	2.66	31.1	63.2
LU 2	0-15 cm	17-Nov-2022	EO2210209-005	0.12	5.08	157	0.48	0.261	17.3	7.50	14.9	8.62	0.0220	0.52	18.4	0.46	<0.10	0.11	<2.0	2.67	28.2	61.2
	TE: 0-15	Average		0.13	5.25	154	0.50	0.260	17.8	7.44	15.8	8.85	0.0226	0.54	18.2	0.52	0.10	0.11	2.0	2.67	29.7	62.2
Receiving S	Site: NE-14-5	5-23 W4M																				
LU 1	0-15 cm	17-Nov-2022	EO2210208-001	0.14	3.44	116	0.28	0.118	10.9	5.19	8.12	5.06	0.0124	0.27	12.7	0.23	<0.10	0.063	<2.0	0.655	16.4	33.6
LU 2	0-15 cm	17-Nov-2022	EO2210208-005	<0.10	2.95	80.9	0.2	0.117	7.68	3.97	6.05	4.52	0.0086	0.25	8.85	<0.20	<0.10	<0.050	<2.0	0.477	13.0	28.4
LU 3	0-15 cm	17-Nov-2022	EO2210208-009	0.13	5.66	181	0.43	0.229	15.7	8.22	15.9	7.64	0.0212	0.52	18.9	0.73	<0.10	0.101	<2.0	1.91	27.3	54.3
LU 4	0-15 cm	17-Nov-2022	EO2210208-013	0.14	5.47	176	0.48	0.276	17.2	7.65	15.0	8.17	0.0240	0.44	20.0	0.69	<0.10	0.117	<2.0	1.67	29.4	57.7
	TE: 0-15	Average		0.14	4.38	138	0.35	0.185	12.9	6.26	11.3	6.35	0.0166	0.37	15.1	0.55	0.10	0.094	2.0	1.18	21.5	43.5
Receiving S	Site: SW-23-	55-23 W4M																				
LU 1	0-15 cm	18-Nov-2022	EO2210211-001	<0.10	2.96	116	0.24	0.13	9.49	4.84	8.57	5.62	0.0121	0.32	10.9	0.22	<0.10	0.068	<2.0	0.642	14.5	37.5
LU 2	0-15 cm	18-Nov-2022	EO2210211-005	<0.10	3.37	121	0.28	0.164	9.97	4.68	10.7	5.56	0.0162	0.34	11.1	0.37	<0.10	0.065	<2.0	0.786	15.7	37.1
LU 3	0-15 cm	17-Nov-2022		0.1	3.95	147	0.38	0.130	11.4	5.15	9.86	5.95	0.0186	0.36	12.3	0.52	<0.10	0.071	<2.0	1.1	17.4	36.9
LU 4	0-15 cm	EO2210211-013	<0.10	2.94	124	0.25	0.143	10.6	4.73	10.8	5.25	0.0118	0.26	12.0	<0.20	<0.10	0.059	<2.0	0.54	14.6	38.4	
	TE: 0-15	Average		0.10	3.31	127	0.29	0.142	10.4	4.85	10.0	5.60	0.0147	0.32	11.6	0.37	0.10	0.066	2.0	0.77	15.6	37.5

TE - Trace Element

BOLD - Greater than Tier 1 Agricultural Guideline

BOLD - Greater than MAC (80% of Tier 1) Threshold

Italicized - TE 0-15 Average concentration equals laboratory detection limit

¹ Alberta Environment and Protected Areas (AEPA). 2024. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. AEPA, Lands Policy, 2024, No. 1.

² Regulated metals under *draft* AEPA Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands.

³ Tetra Tech Canada Inc. 2023. Application for Authorization to Apply Dewatered Biosolids to Marginal Lands within Sturgeon County, Alberta. File: ENW.BIOS03089-01.

[&]quot;-" No applicable guideline or not analyzed

FILE: ENW.BIOS03089-02

Table 11A: Municipal Biosolids Trace Element (Metals) Post Application Modelling Calculations¹ - NW-14-55-23 W4M

Soil				Biosolids		
		Incremen	t (cm)	Actual		
		0-15	15-30	Application Rate (dry, Mg/ha)	21.1	(Fill in)
Depth	cm	15	15			
Bulk Density	Mg/m³	1.30	1.30			
Mass of soil	Mg / ha	1,950	1,950			

	-	Allowable MAC; mg	Concentration /kg)	L	ab Analyses:Co	oncentration	ı (dry; mg/kç	3)		L	oading Cal	culations	
	Biosolids		Soils				Soil		Final Applica	ation Rate (dry, Mg/ha)	:	21.1
				Bioso	olids	Dep	th Incremer	nt (cm):	Bioso	lids:	Final	# of ap	plications:
	MAC ²	MAC ³	80% of MAC	Geometric Mean⁴	Biosolid Suitability ^{5,6}	0-15 cm	15-30 cm ⁷	Geometric Mean⁴	kg/ha	mg/kg	Loading mg/kg	# of Applications	Suitability ⁸
				(Fill in)		(Fill in)	(Fill in)						
Arsenic (As)	41	17.0	13.6	5.1	Suitable	5.25	5.25	5.25	0.11	0.03	5.3	302.6	Suitable
Cadmium (Cd)	15	1.4	1.1	3.85	Suitable	0.260	0.260	0.260	0.08	0.02	0.3	41.2	Suitable
Chromium (Cr)	1,000	64.0	51.2	81	Suitable	17.8	17.8	17.8	1.71	0.44	18.2	76.2	Suitable
Cobalt (Co)	150	20.0	16.0	6.3	Suitable	7.44	7.44	7.44	0.13	0.03	7.5	251.1	Suitable
Copper (Cu)	1,500	63.0	50.4	456	Suitable	15.8	15.8	15.8	9.62	2.47	18.3	14.0	Suitable
Lead (Pb)	300	70.0	56.0	39.9	Suitable	8.85	8.85	8.85	0.84	0.22	9.1	218.4	Suitable
Mercury (Hg)	4	6.6	5.3	1.22	Suitable	0.0226	0.0226	0.0226	0.03	0.01	0.03	796.5	Suitable
Molybdenum (Mo)	20	4.0	3.2	15.0	Suitable	0.54	0.54	0.54	0.32	0.08	0.6	32.7	Suitable
Nickel (Ni)	180	45.0	36.0	37.2	Suitable	18.2	18.2	18.2	0.78	0.20	18.4	88.4	Suitable
Selenium (Se)	25	1.0	8.0	7.0	Suitable	0.52	0.52	0.52	0.15	0.04	0.6	7.3	Suitable
Zinc (Zn)	1,850	250.0	200.0	855	Suitable	62.2	62.2	62.2	18.04	4.63	66.8	29.7	Suitable

¹ Biosolids_Municipal_Calculations_Draft_Calculator_JAN162023_Metals only.xlsx. Patterson, S. (Science and Technology Specialist, AEPA). 2023. Email communication: RE: Land Application Guideline - Follow Up. January 18, 2023.

² Maximum allowable concentration in biosolids. Adopted from the CAN/BNQ National Standard of Canada, values were taken from Table 5 (A comparison of trace element concentrations in manures, municipal sludge and septage) from the Guidance Document for the Beneficial Use of Municipal Biosolids, Municipal Sludge, and Treated Septage (CCME, 2012).

³ Maximum allowable concentration in soil: The default selected is the Alberta Tier - 1 Guideline Value for agricultural land use.

⁴ Geometric mean was selected to align with A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines (CCME 2006).

⁵ Suitability of the biosolids for land application. "Unsuitable" indicates this geometric mean of the biosolid quality for a given parameter exceeds the maximum allowable concentration (MAC) for that parameter.

⁶ Formula correction applied such that if the biosolids geometric mean is less than the Biosolids MAC, the Biosolids Suitability is displayed as "Suitable".

Laboratory analysis of the 15-30 cm depth sample is optional. For trace element modelling purposes, Tetra Tech has assumed the 15-30 cm depth sample concentrations are the same as the 0-15 cm depth samples.

⁸ Suitability of the proposed application rate at the receiving site. Suitability takes into consideration the application rate and quality of the biosolids being applied as well as the quality of the receiving soils. "Unsuitable" means that one or more of these factors may affecting whether or not biosolids may be applied at the receiving site.

FILE: ENW.BIOS03089-02

Table 11B: Municipal Biosolids Trace Element (Metals) Post Application Modelling Calculations¹ - NE-14-55-23 W4M

Soil				Biosolids		
		Incremen	t (cm)	Actual		
		0-15	15-30	Application Rate (dry, Mg/ha)	18.1	(Fill in)
Depth	cm	15	15			
Bulk Density	Mg/m³	1.30	1.30			
Mass of soil	Mg / ha	1,950	1,950			

		Allowable (MAC; mg	Concentration /kg)	L	ab Analyses:Co	oncentration	ı (dry; mg/kç	1)			Loading Ca	culations	
	Biosolids		Soils				Soil		Final Applica	tion Rate (dry, Mg/ha)	:	18.1
				Bioso	olids	Dep	th Incremer	nt (cm):	Biosol	ids:	Final	# of ap	pplications:
	MAC ²	MAC ³	80% of MAC	Geometric Mean⁴	Biosolid Suitability ^{5,6}	0-15 cm	15-30 cm ⁷	Geometric Mean⁴	kg/ha	mg/kg	Loading mg/kg	# of Applications	Suitability ⁸
				(Fill in)		(Fill in)	(Fill in)						
Arsenic (As)	41	17.0	13.6	5.1	Suitable	4.38	4.38	4.38	0.09	0.02	4.4	389.5	Suitable
Cadmium (Cd)	15	1.4	1.1	3.85	Suitable	0.185	0.185	0.185	0.07	0.02	0.2	52.3	Suitable
Chromium (Cr)	1,000	64.0	51.2	81	Suitable	12.9	12.9	12.9	1.47	0.38	13.3	101.8	Suitable
Cobalt (Co)	150	20.0	16.0	6.3	Suitable	6.26	6.26	6.26	0.11	0.03	6.3	333.1	Suitable
Copper (Cu)	1,500	63.0	50.4	456	Suitable	11.3	11.3	11.3	8.25	2.12	13.4	18.4	Suitable
Lead (Pb)	300	70.0	56.0	39.9	Suitable	6.35	6.35	6.35	0.72	0.19	6.5	268.1	Suitable
Mercury (Hg)	4	6.6	5.3	1.22	Suitable	0.0166	0.0166	0.0166	0.02	0.01	0.0223	929.5	Suitable
Molybdenum (Mo)	20	4.0	3.2	15.0	Suitable	0.37	0.37	0.37	0.27	0.07	0.4	40.6	Suitable
Nickel (Ni)	180	45.0	36.0	37.2	Suitable	15.1	15.1	15.1	0.67	0.17	15.3	121.0	Suitable
Selenium (Se)	25	1.0	8.0	7.0	Suitable	0.55	0.55	0.55	0.13	0.03	0.6	7.6	Suitable
Zinc (Zn)	1,850	250.0	200.0	855	Suitable	43.5	43.5	43.5	15.48	3.97	47.5	39.4	Suitable

Biosolids Municipal Calculations Draft Calculator JAN162023 Metals only.xlsx. Patterson, S. (Science and Technology Specialist, AEPA). 2023. Email communication: RE: Land Application Guideline - Follow Up. January 18, 2023.

² Maximum allowable concentration in biosolids. Adopted from the CAN/BNQ National Standard of Canada, values were taken from Table 5 (A comparison of trace element concentrations in manures, municipal sludge and septage) from the Guidance Document for the Beneficial Use of Municipal Biosolids, Municipal Sludge, and Treated Septage (CCME, 2012).

Maximum allowable concentration in soil: The default selected is the Alberta Tier - 1 Guideline Value for agricultural land use.

Geometric mean was selected to align with A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines (CCME 2006).

⁵ Suitability of the biosolids for land application. "Unsuitable" indicates this geometric mean of the biosolid quality for a given parameter exceeds the maximum allowable concentration (MAC) for that parameter.

⁶ Formula correction applied such that if the biosolids geometric mean is less than the MAC, the Biosolids Suitability is displayed as "Suitable".

⁷ Laboratory analysis of the 15-30 cm depth sample is optional. For trace element modelling purposes, Tetra Tech has assumed the 15-30 cm depth sample concentrations are the same as the 0-15 cm depth samples.

⁸ Suitablity of the proposed application rate at the receiving site. Suitability takes into consideration the application rate and quality of the biosolids being applied as well as the quality of the receiving soils. "Unsuitable" means that one or more of these factors may affecting whether or not biosolids may be applied at the receiving site.

FILE: ENW.BIOS03089-02

Table 11C: Municipal Biosolids Trace Element (Metals) Post Application Modelling Calculations¹ - SW-23-55-23 W4M

Soil				Biosolids		
		Incremen	t (cm)	Actual		
		0-15	15-30	Application Rate (dry, Mg/ha)	20.7	(Fill in)
Depth	cm	15	15			
Bulk Density	Mg/m³	1.30	1.30			
Mass of soil	Mg / ha	1,950	1,950			

		Allowable MAC; mg	Concentration /kg)	L	ab Analyses:C	oncentratior	n (dry; mg/ko	g)		L	oading Cal	culations	
	Biosolids		Soils				Soil		Final Applica	ation Rate	(dry, Mg/ha)	:	20.7
				Bioso	olids	Dep	oth Incremer	nt (cm):	Bioso	lids:	Final	# of ap	plications:
	MAC ²	MAC ³	80% of MAC	Geometric Mean ⁴	Biosolid Suitability ^{5,6}	0-15 cm	15-30 cm ⁷	Geometric Mean⁴	kg/ha	mg/kg	Loading mg/kg	# of Applications	Suitability ⁸
				(Fill in)		(Fill in)	(Fill in)						
Arsenic (As)	41	17.0	13.6	5.1	Suitable	3.31	3.31	3.31	0.11	0.03	3.3	380.1	Suitable
Cadmium (Cd)	15	1.4	1.1	3.85	Suitable	0.142	0.142	0.142	0.08	0.02	0.2	47.8	Suitable
Chromium (Cr)	1,000	64.0	51.2	81	Suitable	10.4	10.4	10.4	1.68	0.43	10.8	94.9	Suitable
Cobalt (Co)	150	20.0	16.0	6.3	Suitable	4.85	4.85	4.85	0.13	0.03	4.9	333.4	Suitable
Copper (Cu)	1,500	63.0	50.4	456	Suitable	10.0	10.0	10.0	9.44	2.42	12.4	16.6	Suitable
Lead (Pb)	300	70.0	56.0	39.9	Suitable	5.60	5.60	5.60	0.83	0.21	5.8	237.9	Suitable
Mercury (Hg)	4	6.6	5.3	1.22	Suitable	0.0147	0.0147	0.0147	0.03	0.01	0.0212	813.1	Suitable
Molybdenum (Mo)	20	4.0	3.2	15.0	Suitable	0.32	0.32	0.32	0.31	0.08	0.40	36.1	Suitable
Nickel (Ni)	180	45.0	36.0	37.2	Suitable	11.6	11.6	11.6	0.77	0.20	11.8	123.5	Suitable
Selenium (Se)	25	1.0	8.0	7.0	Suitable	0.37	0.37	0.37	0.14	0.04	0.4	11.5	Suitable
Zinc (Zn)	1,850	250.0	200.0	855	Suitable	37.5	37.5	37.5	17.70	4.54	42.0	35.8	Suitable

¹ Biosolids_Municipal_Calculations_Draft_Calculator_JAN162023_Metals only.xlsx. Patterson, S. (Science and Technology Specialist, AEPA). 2023. Email communication: RE: Land Application Guideline - Follow Up. January 18, 2023.

² Maximum allowable concentration in biosolids. Adopted from the CAN/BNQ National Standard of Canada, values were taken from Table 5 (A comparison of trace element concentrations in manures, municipal sludge and septage) from the Guidance Document for the Beneficial Use of Municipal Biosolids, Municipal Sludge, and Treated Septage (CCME, 2012).

³ Maximum allowable concentration in soil: The default selected is the Alberta Tier - 1 Guideline Value for agricultural land use.

⁴ Geometric mean was selected to align with A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines (CCME 2006).

⁵ Suitability of the biosolids for land application. "Unsuitable" indicates this geometric mean of the biosolid quality for a given parameter exceeds the maximum allowable concentration (MAC) for that parameter.

⁶ Formula correction applied such that if the biosolids geometric mean is less than the MAC, the Biosolids Suitability is displayed as "Suitable".

Laboratory analysis of the 15-30 cm depth sample is optional. For trace element modelling purposes, Tetra Tech has assumed the 15-30 cm depth sample concentrations are the same as the 0-15 cm depth samples.

⁸ Suitablity of the proposed application rate at the receiving site. Suitability takes into consideration the application rate and quality of the biosolids being applied as well as the quality of the receiving soils. "Unsuitable" means that one or more of these factors may affecting whether or not biosolids may be applied at the receiving site.

Table 12: 2	2024 Soil An	alytical Res	ults - Post A	pplication	on Albe	rta Tier	1 Metals	s - Autho	rizatior	No. 63	9-32787	-SLU										_
			Parameter	Antimony	Arsenic ²	Barium	Beryllium	Cadmium ²	Chromium ²	Cobalt ²	Copper 2	Lead ²	Mercury ²	Molybdenum ²	Nickel ²	Selenium ²	Silver	Thallium	Tin	Uranium	Vanadium	Zinc ²
			Unit										mg/kg									
		er 1 Guideline owable Conce		20	17	750	5	1.4	64	20	63	70	6.6	4.0	45	1.0	20	1.0	5.0	23	130	250
			80% of MAC	16.0	13.6	600.0	4.0	1.12	51.2	16.0	50.4	56.0	5.28	3.2	36.0	8.0	16.0	0.8	4.0	18.4	104.0	200.0
Land Unit	Sample Depth (cm)	Laboratory Sample ID	Sample Date																			
Receiving 9	Site: NW-14	-55-23-W4																				
LU 1	0-15	1773457 - 1	31/10/2024	<0.2	5.1	158	0.6	0.26	14.2	6.6	16	8.2	<0.05	<1.0	16.7	0.7	0.2	0.10	<1.0	2.3	23.9	63
20 1	15-30	1773457 - 2	31/10/2024	<0.2	5.3	160	0.6	0.25	14.6	7.3	16	9.6	<0.05	<1.0	17.0	0.6	0.2	0.11	<1.0	1.9	25.4	64
LU 2	0-15	1773457 - 3	31/10/2024	<0.2	4.8	155	0.6	0.22	14.0	6.4	16	8.7	<0.05	<1.0	16.5	0.6	0.1	0.10	<1.0	2.2	23.9	62
202	15-30	1773457 - 4	31/10/2024	<0.2	5.2	151	0.6	0.20	16.9	6.3	15	8.4	<0.05	<1.0	17.8	0.5	0.2	0.11	<1.0	1.9	24.7	59
	0-15 A		0.2	5.0	156.5	0.6	0.24	14.1	6.5	16.0	8.5	0.05	1.0	16.6	0.7	0.2	0.1	1.0	2.3	23.9	62.5	
	15-30		0.2	5.3	155.5	0.6	0.23	15.8	6.8	15.5	9.0	0.05	1.0	17.4	0.6	0.2	0.1	1.0	1.9	25.1	61.5	
Receiving S	Site: NE-14-	55-23-W4																				
LU 2	0-15	1773456 - 1	31/10/2024	<0.2	2.6	83	0.2	0.14	6.7	3.4	7	4.8	<0.05	<1.0	8.0	<0.3	0.1	<0.05	<1.0	<0.5	10.1	30
LO 2	15-30	1773456 - 2	31/10/2024	<0.2	2.9	81	0.2	0.09	6.2	3.8	5	4.4	<0.05	<1.0	7.8	<0.3	<0.1	0.05	<1.0	<0.5	10.3	30
LU 3	0-15	1773456 - 3	31/10/2024	<0.2	3.8	103	0.4	0.16	9.4	4.5	10	5.7	<0.05	<1.0	11.4	0.4	<0.1	0.07	<1.0	1.2	15.9	41
200	15-30	1773456 - 4	31/10/2024	<0.2	4.9	126	0.5	0.13	11.5	6.3	10	6.6	<0.05	<1.0	13.6	0.5	0.1	0.08	<1.0	1.2	19.8	44
LU 4	0-15	1773456 - 5	31/10/2024	<0.2	5.4	166	0.5	0.22	13.6	6.5	16	8.6	<0.05	<1.0	17.0	0.9	0.1	0.09	<1.0	2.2	23.3	57
LO 4	15-30	1773456 - 6	31/10/2024	<0.2	5.1	169	0.6	0.18	13.1	6.8	14	8.2	<0.05	<1.0	16.8	0.7	0.1	0.10	<1.0	2.3	22.9	55
	0-15 <i>A</i>	verage		0.2	3.9	117.3	0.4	0.17	9.9	4.8	11.0	6.4	0.05	1.0	12.1	0.7	0.1	0.1	1.0	1.7	16.4	42.7
	15-30	Average		0.2	4.3	125.3	0.4	0.13	10.3	5.6	9.7	6.4	0.05	1.0	12.7	0.6	0.1	0.1	1.0	1.8	17.7	43.0
Receiving S	Site: SW-23-	55-23-W4																				
LU 1	0-15	1773458 - 1	31/10/2024	<0.2	2.9	85	0.2	0.12	6.6	3.5	7	4.6	<0.05	<1.0	8.1	<0.3	<0.1	<0.05	<1.0	0.6	11.0	28
	15-30	1773458 - 2	31/10/2024	<0.2	2.8	80	0.3	0.07	6.5	4.0	5	4.1	<0.05	<1.0	7.6	<0.3	<0.1	0.05	<1.0	0.6	11.1	25
LU 2	0-15	1773458 - 3	31/10/2024	<0.2	3.4	111	0.4	0.17	8.4	4.1	10	6.0	<0.05	<1.0	9.7	0.4	<0.1	0.06	<1.0	8.0	14.3	37
	15-30	1773458 - 4	31/10/2024	<0.2	3.1	89	0.3	0.11	7.8	3.5	7	4.9	<0.05	<1.0	7.8	0.4	<0.1	0.06	<1.0	0.6	12.6	30
1113	0-15	1773458 - 5	31/10/2024	<0.2	3.3	119	0.3	0.13	8.7	4.5	10	5.9	<0.05	<1.0	10.2	0.3	<0.1	0.06	<1.0	0.7	13.9	36
200	15-30 1773458 - 6 31/10/2024			<0.2	3.8	124	0.3	0.09	9.1	5.2	8	5.8	<0.05	<1.0	10.7	0.3	0.1	0.07	<1.0	0.6	14.9	38
	0-15 A	verage		0.2	3.2	105.0	0.3	0.14	7.9	4.0	9.0	5.5	0.05	1.0	9.3	0.4	0.1	0.1	1.0	0.7	13.1	33.7

3.2

97.7

0.09

0.3

7.8

0.2

BOLD - Greater than Tier 1 Agricultural Guideline

BOLD - Greater than MAC (80% of Tier 1) Threshold

15-30 Average

Italicized - 0-15 cm average concentration equals laboratory detection limit

4.2

6.7

0.05

4.9

1.0

8.7

0.4

0.1

0.1

1.0

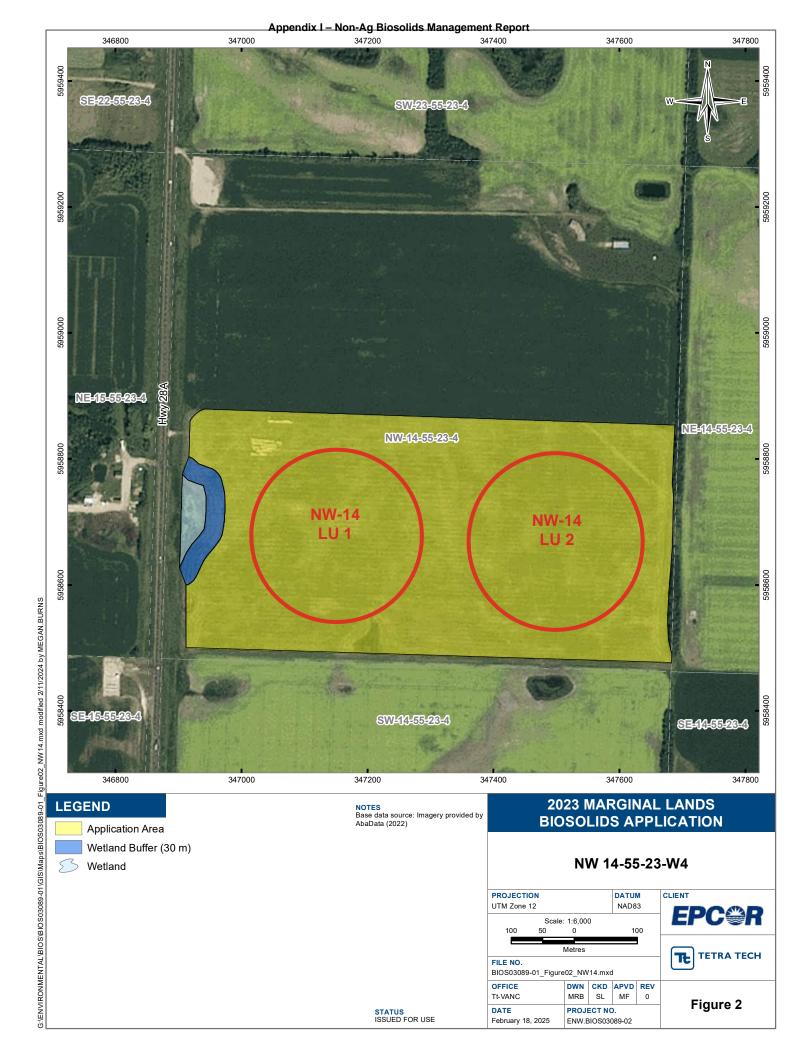
0.6

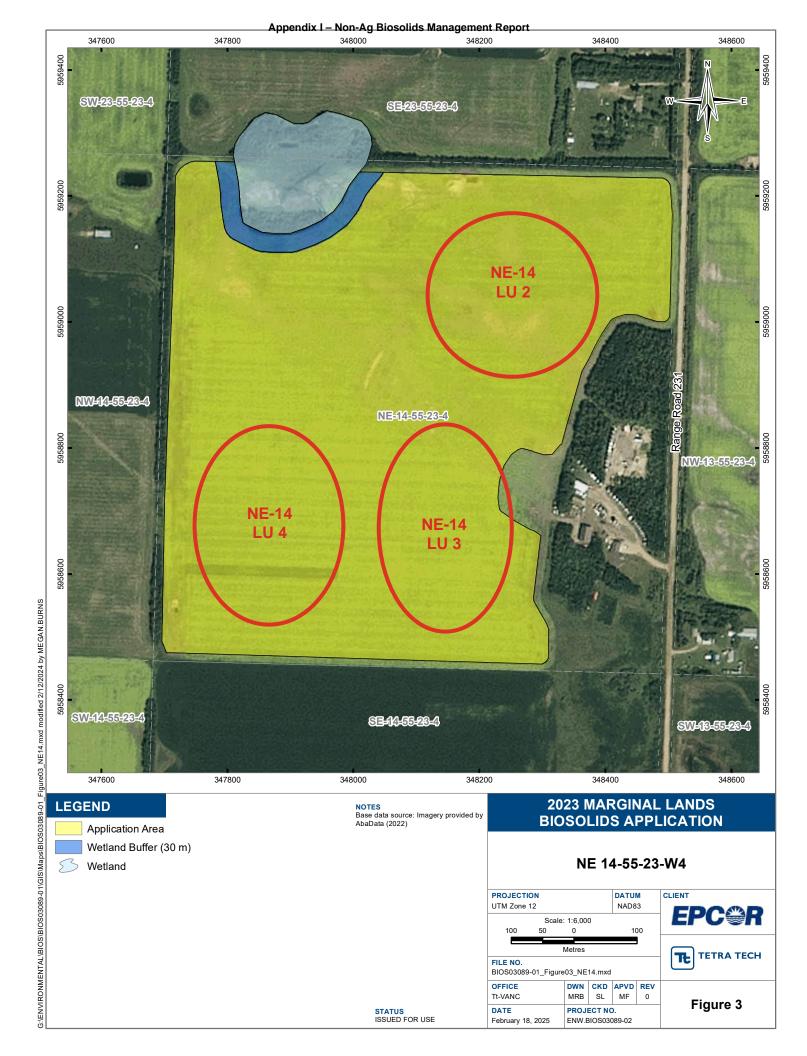
12.9

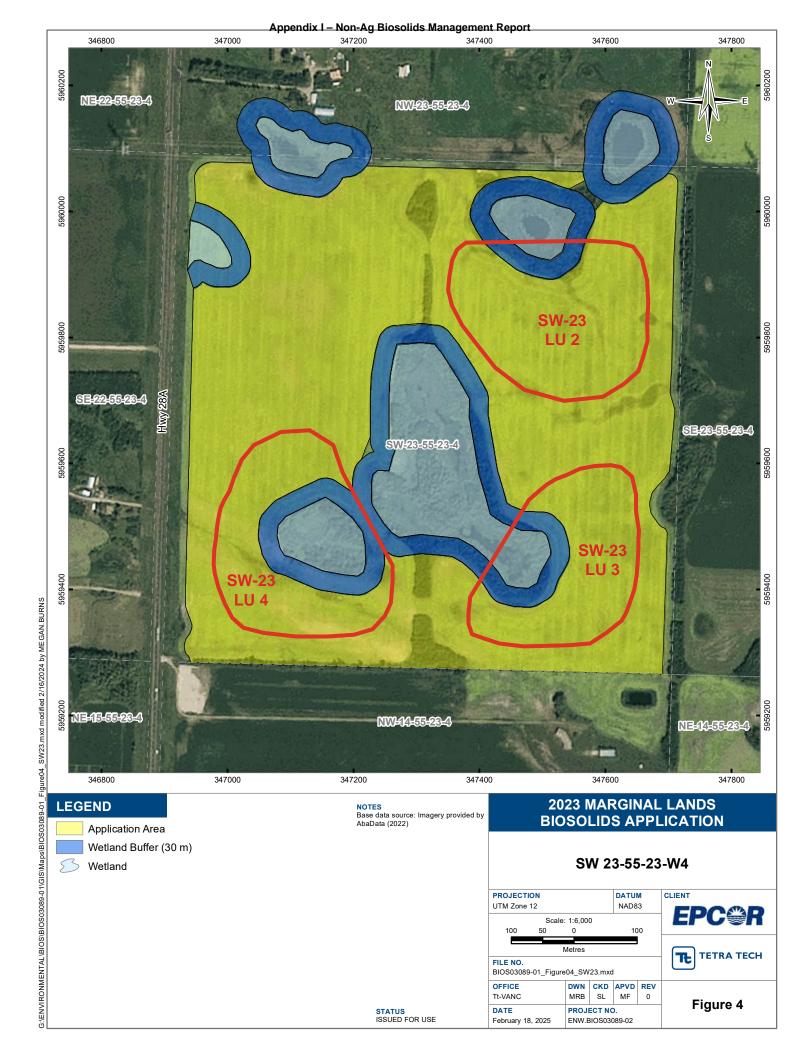
31.0

¹ Alberta Environment and Protected Areas (AEPA). 2024. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. AEPA, Lands Policy, 2024, No. 1. Referenced guidelines are for fine and coarse textured soils under Agricultural land use.

² Regulated metals under *draft* AEPA Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands.


2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 2025 | ISSUED FOR USE


FIGURES


Figure 1	2023 Marginal Land Biosolids Application: NW 07-54-21 W4M, SW 07-54-21 W4M, SE 07-54-21 W4M
Figure 2	2023 Marginal Land Biosolids Application: NW 14-55-23 W4M
Figure 3	2023 Marginal Land Biosolids Application: NE 14-55-23 W4M
Figure 4	2023 Marginal Land Biosolids Application: SW 23-55-23 W4M

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 2025 | ISSUED FOR USE

SITE PHOTOGRAPHS

Photo 1: October 18, 2023. Agricultural spreader used to spread dewatered biosolids, cleaned prior to mobilization to Sturgeon County fields.

Photo 2: October 18, 2023. Agricultural spreader used to spread dewatered biosolids, cleaned prior to mobilization to Sturgeon County fields

Photo 3: October 18, 2023. Spreading dewatered biosolids on SW 23-55-23 W4M with agricultural spreader.

Photo 4: October 18, 2023. Spread pattern of dewatered biosolids on SW 23-55-23 W4M.

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 2025 | ISSUED FOR USE

APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

LIMITATIONS ON USE OF THIS DOCUMENT

NATURAL SCIENCES

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by persons other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary investigation and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 ENVIRONMENTAL ISSUES

The ability to rely upon and generalize from environmental baseline data is dependent on data collection activities occurring within biologically relevant survey windows.

It is incumbent upon the Client and any Authorized Party, to be knowledgeable of the level of risk that has been incorporated into the project design or scope, in consideration of the level of the environmental baseline information that was reasonably acquired to facilitate completion of the scope.

1.8 NOTIFICATION OF AUTHORITIES

TETRA TECH professionals are bound by their ethical commitments to act within the bounds of all pertinent regulations. In certain instances, observations by TETRA TECH of regulatory contravention may require that regulatory agencies and other persons be informed. The client agrees that notification to such bodies or persons as required may be done by TETRA TECH in its reasonably exercised discretion.

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 2025 | ISSUED FOR USE

APPENDIX B

LETTERS OF AUTHORIZATION - BIOSOLIDS APPLICATION TO LAND

September 6, 2023

Mr. Mohammad Rahman, P.Eng.
EPEA Team Leader
Capital District – RAD North
Alberta Environment and Protected Areas
111 Twin Atria Building
4999-98 Avenue
Edmonton, AB T6B 2X3

Re: 2023 Edmonton Wastewater Approval No. 639-03-06, Biosolids Stockpile Notification

Dear Mr. Rahman:

As per section 4.6 of approval number 639-03-06, this is a notification for an EPCOR land application of municipal biosolids stockpile location. The site is located SE 7-54-21 W4M. Attached is the site report and landowner acknowledgement.

Please contact me with any questions or clarifications at 780-718-2126.

Regards,

David Curran, P.Eng. Biosolids Manager

Operations, Gold Bar WWTP

Cc:

Deidre Bartlett, EPCOR

Larry Olstad, Olstad & Company

Regulatory Assurance Division North Region – Capital District 111 Twin Atria Building

4999 98 Avenue Edmonton AB T6B 2X3 Telephone: 780-427-7617

https://www.alberta.ca/environment-and-protected-

areas.aspx

Date: October 16, 2023

File No.: 0202-639 Application No.: 639-32733-SLU

David Curran, P. Eng. Manager Biosolids, Operations EPCOR Water Services 9504 49 ST NW Edmonton, AB T6B 2M9

Delivered Via E-mail to: dcurran@epcor.com

Dear Mr. Curran:

Re: Letter of Authorization – Biosolids Application to Land
EPCOR Water Services Inc. (EWSI) – Edmonton Wastewater System

Environmental Protection and Enhancement Act (EPEA) Approval No. 639-03-00

Environment and Protected Areas (EPA) has reviewed the submission made by EPCOR Water Services Inc. (EWSI) dated September 12, 2023. EWSI is requesting an authorization to apply wastewater biosolids to lands located at the following quarter sections within the Strathcona County:

- NW 07-54-21 W4M
- SW 07-54-21 W4M
- SE 07-54-21 W4M

This Letter of Authorization is issued pursuant to the *Environmental Protection and Enhancement Act*, Wastewater and Storm Drainage Regulation 119/93, Section 8.

Please note, as per the Condition No.12 of the attached Appendix to this Letter of Authorization, the Approval Holder shall submit summary reports to the Director as described.

If you have any questions regarding this letter, please contact Mohammad M. Rahman at (780) 422-1721.

Sincerely.

Gerald Feschuk, P. Eng.

Designated Director under the Act

cc: Deidre Bartlett, Dbartlett@epcor.com

Mark Fawcett, mark.fawcett@tetratech.com

Mohammad M. Rahman, EPA

Classification: Protected A

AUTHORIZATION	NO.
639-32557-SLU	

Page	1 of 2	

APPENDIX

1. The dewatered biosolids from the Edmonton Wastewater System shall be stockpiled in accordance with the Alberta Environment and Parks' Draft Dewatered Biosolids Stockpiling Guidelines (October 19, 2009, prepared by Sylvis Environmental Services Inc.).

2. The following parcels of land may receive biosolids from the Edmonton Wastewater System at a rate not exceeding the dry biosoilds per hectare of land as described below:

Land Description	Area (ha)	Classification	Application Rate (dt/ha)
NW 07-54-21 W4M	20	2	15.4
NW 07-54-21 W4M			
SW 07-54-21 W4M	125	1	19.8
SE 07-54-21 W4M			

- 3. Post sampling and analysis for Alberta Tier 1 metals shall be conducted for the land units where preapplication soil pH is lower than 6.0 in the 0-30 cm depth and lime is not added to adjust pH accordingly including NW 07-54-21, SW 07-54-21 W4M and SE 07-54-21 W4M.
- 4. Biosolids shall be applied in accordance with Alberta Environment's *Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands*.
- 5. Land to which biosolids is applied shall be cultivated as soon as possible following the biosolids application.
- 6. Biosolids shall not be applied to soil that is frozen or snow covered.
- 7. Parcels of lands which have received biosolids within the past 3 years may only have biosolids applied to the portion of the parcel that was not completed during the prior application.
- 8. EWSI shall obtain written approval from the appropriate pipeline authority or authorities before any biosolids transport or spreading vehicles cross any pipeline or pipeline corridors located on the aforementioned parcels of land. Should permission not be obtained to travel over a pipeline or pipeline corridor then the area over the corridor must be marked and tanker travel over same prohibited.
- 9. Any parts of the aforementioned parcels of land which may be subject to periodic flooding or water ponding shall not receive biosolids if said flooding or ponding crosses onto an adjacent landowner's property.
- 10. Biosolids haulage and/or spreading vehicles shall be operated and maintained such that biosolids deposition on public roadways is minimized and does not create a public nuisance.
- 11. Any release, spill, or discharge into a watercourse or on land not designated to receive biosolids shall immediately be reported to the Environment and Protected Areas at 1-780-422-4505.
- 12. Following completion of the 2023 and 2024 biosolids spreading program, and no later than February 28, 2024, and 2025 respectively, EWSI shall submit biosoilds application summary report including the monitoring results to the Director.
- 13. This Letter of Authorization expires on June 30, 2024.

	1. June	
DATED October 16, 2023		
	Gerald Feschuk, P. Eng. Designated Director under the Act	

9504-49 Street, Edmonton, Alberta T6B 2M9 Canada Epcor.com

June 16, 2023

Mr. Mohammad Rahman, P.Eng.
EPEA Team Leader
Capital District – RAD North
Alberta Environment and Protected Areas
111 Twin Atria Building
4999-98 Avenue
Edmonton, AB T6B 2X3

Re: 2023 Edmonton Wastewater Approval No. 639-03-06, Biosolids Stockpile Notification

Dear Mr. Rahman:

As per section 4.6 of approval number 639-03-06, this is a notification for an EPCOR land application of municipal biosolids stockpile location. The site is located SW 23-55-23 W4M. Attached is the site report and landowner acknowledgement.

Please contact me with any questions or clarifications at 780-718-2126.

Regards,

David Curran, P.Eng. Biosolids Manager

Operations, Gold Bar WWTP

Cc:

Deidre Bartlett, EPCOR

Larry Olstad, Olstad & Company

Regulatory Assurance Division North Region – Capital District

111 Twin Atria Building 4999 98 Avenue Edmonton AB T6B 2X3 Telephone: 780-427-7617

https://www.alberta.ca/environment-and-protected-

areas.aspx

Date: October 18, 2023

File No.: 0202-639 Application No.: 639-32787-SLU

David Curran, P. Eng. Manager Biosolids, Operations EPCOR Water Services 9504 49 ST NW, Edmonton

Delivered Via E-mail to: dcurran@epcor.com

Dear Mr. Curran:

Re: Letter of Authorization - Biosolids Application to Land

EPCOR Water Services Inc. (EWSI) - Edmonton Wastewater System

Environmental Protection and Enhancement Act (EPEA) Approval No. 639-03-00

We are enclosing the Letter of Authorization to apply wastewater biosolids to lands located at:

• NW 02-55-23 W4M

• NE 14-55-23 W4M

• SW 11-55-23 W4M

• SW 23-55-23 W4M

• NW 14-55-23 W4M

in Sturgeon County as described in your submission dated September 22, 2023. This Letter of Authorization is issued pursuant to the *Environmental Protection and Enhancement Act* (EPEA), Wastewater and Storm Drainage Regulation 119/93, Section 8.

Please note, as per the Condition No.13 of the attached Appendix to this Letter of Authorization, the Approval Holder shall submit summary reports to the Director as described. The letter of Authorization 639-32557 SLU issued on September 12, 2023, is cancelled.

If you have any questions regarding this letter, please contact Mohammad M. Rahman at (780) 422-1721 or via email to Mohammad.m.rahman@gov.ab.ca.

Sincerely,

Gerald Feschuk, P. Eng.

Designated Director under the Act

cc: Deidre Bartlett, dbarlett@epcor.com

Mark Fawcett, <u>mark.fawcett@tetratech.com</u>

Mohammad M. Rahman, EPA

Classification: Protected A

639-32787-SLU Page 1 of 2

Δ	P	P	F	N		IX
_			_		u	

1. The dewatered biosolids from the Edmonton Wastewater System shall be stockpiled in accordance with the Alberta Environment and Parks' Draft Dewatered Biosolids Stockpiling Guidelines (October 19, 2009, prepared by Sylvis Environmental Services Inc.).

2. The following parcels of land may receive biosolids from the Edmonton Wastewater System at a rate not exceeding the dry biosolids per hectare of land as described below:

Land Description	Area (ha)	Classification	Application Rate (dt/ha)
NW 02-55-23 W4M	65	1	19.8
SW 11-55-23 W4M	52	1	19.8
NW 14-55-23 W4M	32	1	19.8
NE 14-55-23 W4M	56	3	8.8
SW 23-55-23 W4M	52	3	8.8

- 3. Post application Alberta Tier 1 metals in the 0-15 cm and 15-30 cm depths shall be conducted for all applicable land units where pre-application soil pH is lower than 6.0 in the 0-30 cm depth and lime is not added to adjust pH, accordingly, including NW 14-55-23 W4M, NE 14-55-23 W4M and SW 23-55-23 W4M.
- 4. Biosolids shall not be applied in NW 02-55-23 W4M and SW 11-55-23 W4M unless the two fields are limed accordingly prior to biosolids being applied.
- Biosolids shall be applied in accordance with Alberta Environment's Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands.
- 6. Land to which biosolids is applied shall be cultivated as soon as possible following the biosolids application.
- 7. Biosolids shall not be applied to soil that is frozen or snow covered.
- 8. Parcels of lands which have received biosolids within the past 3 years may only have biosolids applied to the portion of the parcel that was not completed during the prior application.
- 9. EWSI shall obtain written approval from the appropriate pipeline authority or authorities before any biosolids transport or non-agricultural spreading vehicles cross any pipeline or pipeline corridors located on the aforementioned parcels of land. Should permission not be obtained to travel over a pipeline or pipeline corridor then the area over the corridor must be marked and tanker travel over same prohibited.
- 10. Any parts of the aforementioned parcels of land which may be subject to periodic flooding or water ponding shall not receive biosolids if said flooding or ponding crosses onto an adjacent landowner's property.
- 11. Biosolids haulage and/or spreading vehicles shall be operated and maintained such that biosolids deposition on public roadways is minimized and does not create a public nuisance.
- 12. Any release, spill, or discharge into a watercourse or on land not designated to receive biosolids shall immediately be reported to the Environment and Protected Areas at 1-780-422-4505.
- 13. Following completion of the 2023 and 2024 biosolids spreading program, and no later than February 28, 2024, and 2025 respectively, EWSI shall submit biosolids application summary report including the monitoring results to the Director.
- 14. This Letter of Authorization expires on June 30, 2024.

	1. June
DATED: October 18, 2023	
	Gerald Feschuk, P. Eng. Designated Director Under the Act

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 2025 | ISSUED FOR USE

APPENDIX C

LANDOWNER ACKNOWLEDGEMENT

Box 1059, Lamont, Alberta T0B 2R0 Canada

Dear Sir/Madame:

Thank you for your interest in the Olstad & Company Ltd. ("OLSTAD") City to Soil program.

This letter is to confirm that you have requested that the agricultural land described as:

3527-54-21-W4 NW7-5421-W4

(the "Land") be considered a candidate site for the City to Soil program. As you know, the City to Soil program involves the application of biosolids to agricultural land in accordance with the Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands (Alberta Environment March 2001).

If acceptable to you, please return a fully signed original of the enclosed Acknowledgement and Authorization to the attention of Larry Olstad at the above address or email a fully signed copy to olstad.co@gmail.com. The Acknowledgement and Authorization must be signed by all owners and lessees of the Land. Once the fully signed Acknowledgement and Authorization has been received, OLSTAD will commence its assessment of the Land to determine if the Land is an appropriate candidate site for the City to Soil program.

For further information about the Nutri-Gold program please call 780-940-4803.

LARRY OLSTAD

Signature

Date

ACKNOWLEDGEMENT AND AUTHORIZATION:

Re: Potential application of biosolids to agricultural land described

as 512-7-54-21-W4 NW7-54-21-W4 (the "Lands)

In consideration of Olstad & Company Ltd. ("OLSTAD"): (i) evaluating the Lands as a potential candidate site for the Nutri-Gold program; and (ii) potentially applying biosolids to the Lands (if the Lands are determined to be suitable and are selected for application of biosolids, all as decided by OLSTAD in its sole discretion), the undersigned hereby agree(s) as follows:

- I/We [insert name of land owner(s) and lessee(s)], hereby certify that we are the registered owner(s)/lessee(s) of the Lands and hereby request that the Lands be considered a candidate site for the Nutri-Gold program.
- 2. I/We understand that the Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands (Alberta Environment March 2001) (the "Guidelines") indicate as follows:
 - a. biosolids application to agricultural land is intended for the production of forages, oil seeds, small grains (see the Guidelines for further recommendations), dried legumes (peas, beans, etc), trees and commercial sod;
 - b. that no direct grazing be permitted on the Lands for a period of at least three years following application of biosolids; and
 - c. that biosolids not be applied on land intended for production of root crops, tobacco and crops eaten raw (including without limitation fresh fruits and vegetables) or used in dairy farm pasturing.
- 3. I/We acknowledge and agree that any biosolids applied to or stockpiled on the Lands are provided on an as-is where-is basis and that OLSTAD disclaims all representations or warranties. express or implied, including without limitation any implied warranties of merchantability or fitness for any particular purpose.
- 4. I/We understand that there may be certain inherent risks associated with the application of biosolids to the Lands and I/we assume those risks. I/we hereby release and indemnify OLSTAD, its directors, officers, employees and affiliates from any losses, injuries, claims, demands, liabilities, damages or actions brought or made against OLSTAD, its directors, officers, employees or affiliates or which they may sustain or incur as a result of or in connection with the activities described herein, including without limitation performance of soil testing, the application of biosolids to the Lands and the stockpiling of biosolids on the Lands.
- I/We hereby authorize OLSTAD, and its authorized agents, to enter upon the Lands in order to conduct
 soil testing to determine the suitability of the Lands for the City to Soil program and to communicate the
 results of this testing to third parties as may be required by law and for OLSTAD's administrative
 purposes.
- 6. If the Lands are determined to be suitable and are selected for the application of biosolids, I/We further authorize OLSTAD, and it authorized agents, to enter upon the Lands and apply the biosolids.
- 7. If OLSTAD has dewatered biosolids or lime that it wishes to stockpile on the Lands, I/We hereby authorize OLSTAD, and its authorized agents, to enter upon the Lands to stockpile the dewatered biosolids.
- 8. I/We understand that the City to Soil program is a program offered by OLSTAD at the sole discretion of OLSTAD as part of its biosolids management program and that OLSTAD may cancel, withdraw or adjust the application of biosolids at any time, without liability or notice, at OLSTAD's sole discretion.

- I/We further agree that no compensation is payable by OLSTAD for the City to Soil program, including
 without limitation, for the soil testing, application of biosolids, stockpiling of biosolids/lime, or the
 cancellation, withdrawal or adjustment of any application of biosolids on the Lands.
- 10. I/We agree to advise OLSTAD if the ownership of the Lands changes or if the lessee(s) of the Lands change.
- 11. I/We agree to disclose that biosolids have been applied to the Lands to any potential purchaser or lessee of the Lands.
- 12. I/We agree that this Acknowledgement and Authorization will be valid for a period of three (3) years from the date of the final signature below.
- 13. I/We acknowledge that OLSTAD will be relying on the accuracy of and authorizations contained in the foregoing statements in performing the activities outlined herein, including without limitation soil testing, application of biosolids to the Lands and stockpiling of biosolids on the Lands.
- 14. This Acknowledgement and Authorization may be signed in any number of counterparts, each of which will be deemed to be an original and all of which taken together will be deemed to constitute one and the same document. Counterparts may be delivered in original form or by email and each copy will be deemed to be an original.
- 15. I/We acknowledge that I/We understand that this agreement is exclusive and binding for 5 years and that no other biosolids may be applied or similar agreements can be entered into without the written permission of OLSTAD. I/We understand that this exclusive agreement is with OLSTAD and all Lands owned, rented or otherwise control are subject to this agreement with regards to any biosolids application for 5 years.
- 16. I/We acknowledge that I/We have read, understand and agree with all of the provisions of this Acknowledgement and Authorization, and acknowledge that I/We have had the opportunity to obtain independent legal advice with respect to it.

CHRIS ALIAM Print Name(s) (land owner(s))	Print Name(s) (lessee(s))
elm	
Signature	Signature
MAY 24/19 Date	Date
Chris. 780-777-4276 5/27-54-21-WY & NW.	7-54-21-64
Chris Hardmay. 780-222-9273	
NW-7-54-21-W4 old past 5/2 7 54-21-W4 hay land	for atterfirstant

Box 1059 Lamont, AB TOB 2RO

Dear Sir/Madam:

Re: Olstad & Company Ltd.- City to Soil Program Acknowledgement and Authorization

Thank you for your interest in the Olstad & Company Ltd. ("OLSTAD") City to Soil program.

This letter is to confirm that you have requested that the agricultural land described as:

NY ECW NW2, SWII 55, 23 WY

Sta 14 5533 W4 SW2355-23 W4 (the "Land")

be considered a candidate site for the City to Soil program. As you know, the City to Soil program involves the application of biosolids to agricultural land in accordance with the Guidelines for the Application of Municipal Wastewater Sludges to Agricultural Lands (Updated August 2009).

If acceptable to you, please return a fully signed original of the enclosed Acknowledgement and Authorization to the attention of Larry Olstad, Director at the above-noted mailing address or email to olstad.co@gmail.com.

ure and program to program of the body with the body and
The Acknowledgement and Authorization must be signed by all owners and lessees of the Land. Once the fully signed Acknowledgement and Authorization has been received, OLSTAD will commence its assessment of the Land to determine if the Land is an appropriate candidate site for the City to Soil program.

For further information about the City to Soil program please call Larry Olstad [780-940-4803].

Additional Notes:

ACKNOWLEDGEMENT AND AUTHORIZATION

ication of biosolids to agricultural land described as:

北京印度即第

\$55-23-WY SW23-5523-WY (the "Lands")

Olstad & Company Ltd. ("OLSTAD") (I) evaluating the Lands as a potential candidate site for igram; and (ii) potentially applying biosolids to the Lands (if the Lands are determined to be selected for application of biosolids, all as decided by OLSTAD in its sole discretion), the by agree(s) as follows:

, hereby certify that we are the registered owner(s)/lessee(s) and hereby request that the Lands be considered a candidate site for the City to Soil program.

stand that the Guidelines for the Application of Municipal Wastewater Sludges to Agricultural lated August 2009) (the "Guidelines") indicate as follows:

solids application to agricultural land is intended for the production of forages, oil seeds, small ains (see the Guidelines for further recommendations), dried legumes (peas, beans, etc.), trees ad commercial sod;

nat no direct grazing be permitted on the Lands for a period of at least three years following application of biosolids; and

that biosolids not be applied on land intended for production of root crops, tobacco and crops eaten raw (including without limitation fresh fruits and vegetables) or used in dairy farm pasturing.

acknowledge and agree that any biosolids applied to or stockpiled on the Lands are provided on an asere-is basis and that OLSTAD disclaims all representations or warranties, express or implied, including out limitation any implied warranties of merchantability or fitness for any particular purpose.

e understand that there may be certain inherent risks associated with the application of biosolids to the rids and I/we assume those risks. I/we hereby release and indemnify OLSTAD, its directors, officers, iployees and affiliates from any losses, injuries, claims, demands, liabilities, damages or actions brought made against OLSTAD, its directors, officers, employees or affiliates or which they may sustain or incurs a result of or in connection with the activities described herein, including without limitation performance of bill testing, the application of biosolids to the Lands and the stockpilling of biosolids on the Lands.

We hereby authorize OLSTAD, and its authorized agents, to enter upon the Lands at any time this Acknowledgement and Authorization is in effect, in order to conduct soil testing to determine the suitability of the Lands for the City to Soil program and to communicate the results of this testing to third parties as may be required by law and for OLSTAD's administrative purposes.

If the Lands are determined to be suitable and are selected for the application of biosolids, I/We further authorize OLSTAD, and its authorized agents, to enter upon the Lands and apply the biosolids.

- If OLSTAD has dewatered biosolids that it wishes to stockpile on the Lands, I/We hereby authorize OLSTAD, and its authorized agents, to enter upon the Lands to stockpile the dewatered biosolids in accordance with OLSTAD's program requirements. If there are unforeseen circumstances, including a weather event, I/We agree that OLSTAD may leave the stockpiled biosolids on the Lands until it is safe and able, in OLSTAD's sole discretion, to spread and incorporate the material onto the Lands.
 - 8. I/We understand that the City to Soil program is a program offered by OLSTAD at the sole discretion of OLSTAD as part of its biosolids management program and that OLSTAD may cancel, withdraw or adjust the application of biosolids at any time, without liability or notice, at OLSTAD's sole discretion.

- 9. I/We further agree that no compensation is payable by OLSTAD for the City to Soil program, including without limitation, for the soil testing, application of biosolids, stockpiling of biosolids, or the cancellation, withdrawal or adjustment of any application of biosolids on the Lands.
- 10. I/We agree to advise OLSTAD if the ownership of the Lands changes or if the lessee(s) of the Lands change.
- 11. I/We agree to disclose that biosolids have been applied to the Lands to any potential purchaser or lessee of the Lands.
- for the country of th 12. I/We agree that this Acknowledgement and Authorization is effective from the date of the final signature below and will be valid for a period of three (3) years.
- 13. I/We acknowledge that OLSTAD will be relying on the accuracy of and authorizations contained in the foregoing statements in performing the activities outlined herein, including without limitation soil testing, application of biosolids to the Lands and stockpilling of biosolids on the Lands.
- 14. This Acknowledgement and Authorization may be signed in any number of counterparts, each of which will be deemed to be an original and all of which taken together will be deemed to constitute one and the same document. Counterparts may be delivered in original form or by email or text message and each will be deemed to be an original.
- 15. I/We acknowledge that this agreement is exclusive and binding for 5 years and that no other biosolids may be applied or that similar agreements can be entered into without any written permission from OLSTAD. I/We understand that this exclusive agreement is with OLSTAD and all lands owned, rented or otherwise are subject to this agreement with regards to any biosolids application for 5 years.
- 16. I/We acknowledge that if dewatered material is stockpiled on the land, it may remain on the land for up to 18 months after the completion of hauling before incorporation. OLSTAD will determine when the biosolids will be incorporated. OLSTAD is not responsible for any inconvenience or loss of revenue if stockpiles have to be farmed around. Congression of the congression of detections the constitution of t
- 17. I/We acknowledge that I/We have read, understand and agree with all of the provisions of this Acknowledgement and Authorization, and acknowledge that I/We have had the opportunity to obtain independent legal advice with respect to it.

the state of the second state of the second
ko**al ni probin**io sa priktar corrected to establish lists total and a total fire or

Continued a sense of the continued of th

books to an adultionale time interit to an absention as also also as

Legal Land Description

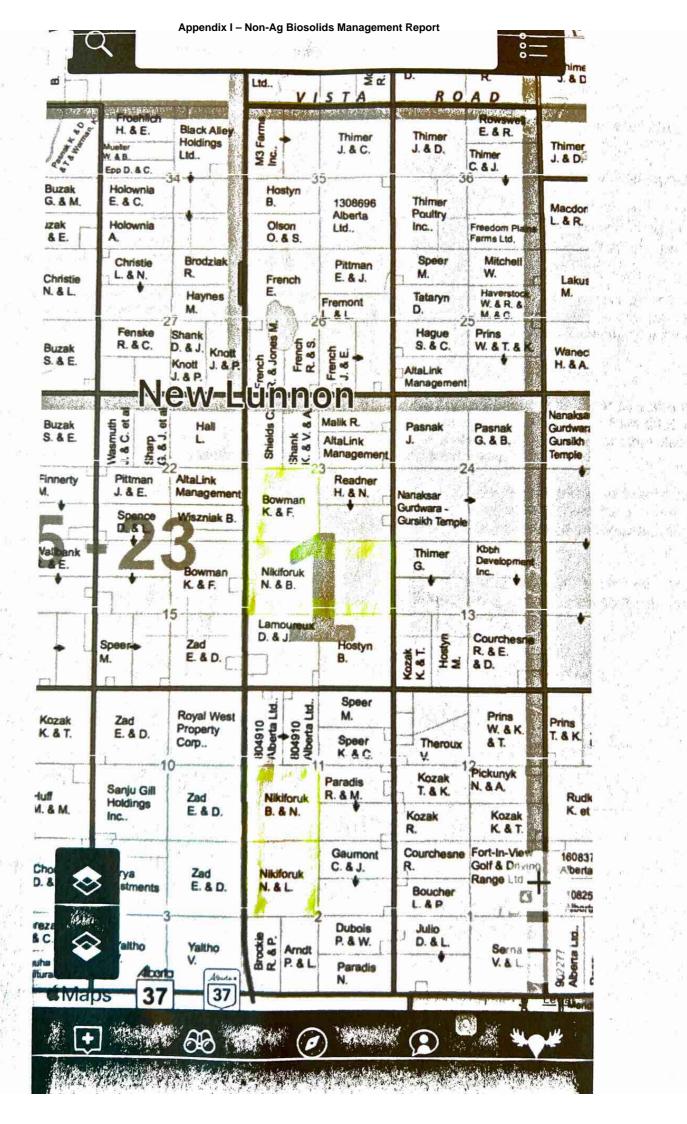
ANY TO THE PARTY OF THE PROPERTY OF THE PARTY OF THE PART

The Property of the Party and

A responsible to the second

have about the property of the

- Promittoffitz the Elimit with the hi


Blair Nikiforuk

Name: Landowner out soft het gelaga som byen mede

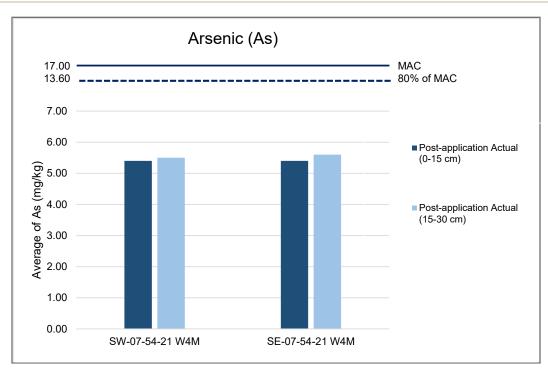
Signature THE RESIDENCE THE COMMITTEE'S SHOW THE PROPERTY OF THE

The action perfections that the second with the property of the 780 Phone Number of the Buttle Cornel there is carried vital objects and a soften the your manage of the hill invite out his

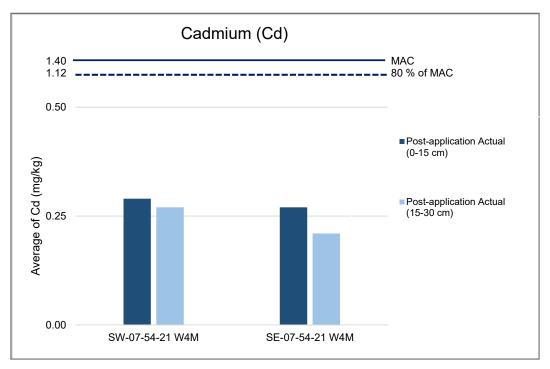
Email

Appendix I – Non-Ag Biosolids Management Report

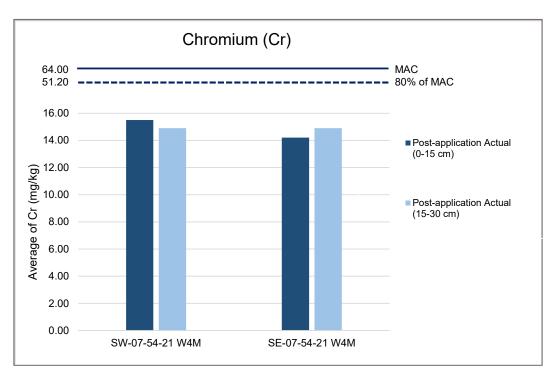
2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 2025 | ISSUED FOR USE

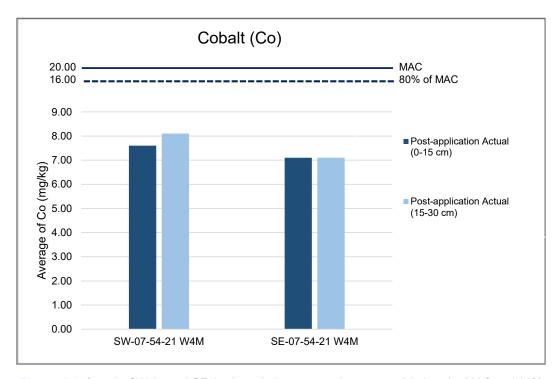

APPENDIX D

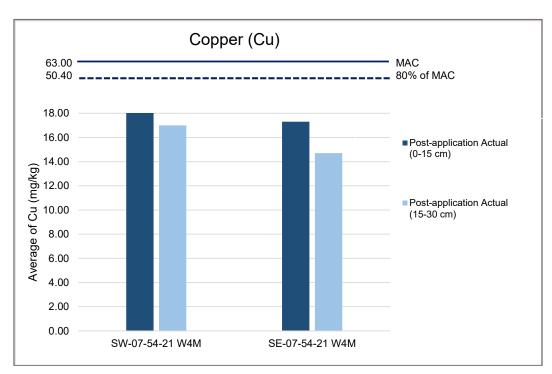
MONITORING PROGRAM METAL CONCENTRATIONS

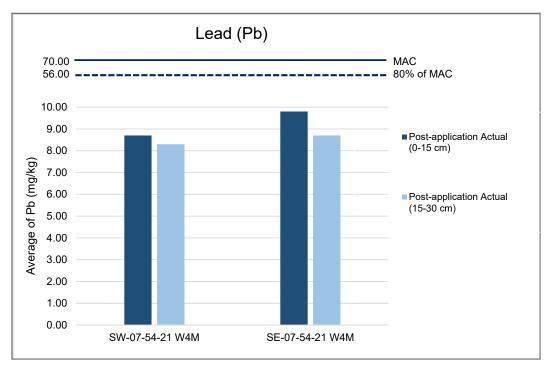

MAC – Maximum Allowable Concentration – Alberta Tier 1 guideline value.

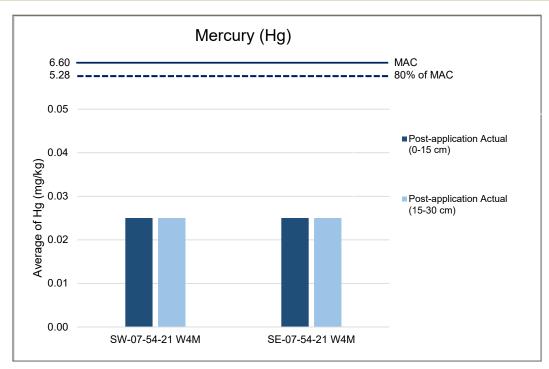
80% of MAC – 80% or the Maximum Allowable Concentration. Used for monitoring purposes only as an indication of potential environmental concerns related to application of biosolids to agricultural lands.


Figure D1.As: In SW-07 and SE-07 the arsenic concentrations are well below the MAC¹ and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.


Figure D1.Cd: In SW-07 and SE-07 the cadmium concentrations are well below the MAC and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.


¹ The Alberta Tier 1 guideline value or Maximum Allowable Concentration (MAC).


Figure D1.Cr: In SW-07 and SE-07 the chromium concentrations are well below the MAC and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.


Figure D1.Co: In SW-07 and SE-07 the cobalt concentrations are well below the MAC and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.

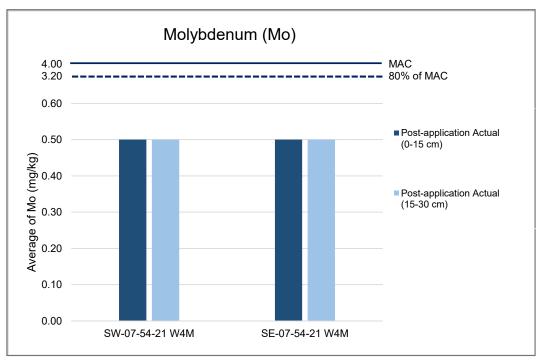
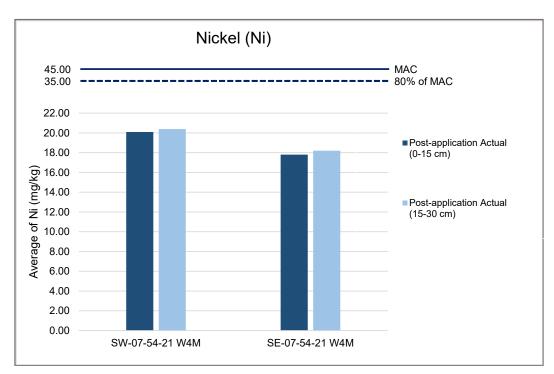
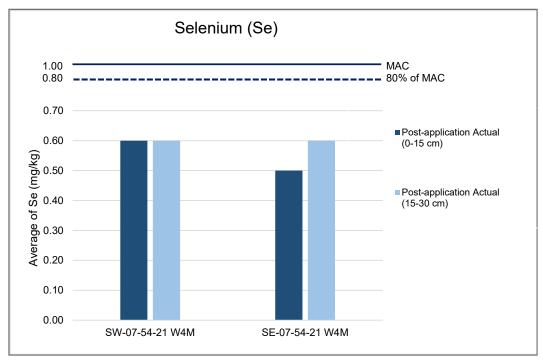

Figure D1.Cu: In SW-07 and SE-07 the copper concentrations are well below the MAC and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.

Figure D1.Pb: In SW-07 and SE-07 the lead concentrations are well below the MAC and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.


Figure D1.Hg²: In SW-07 and SE-07 the mercury concentrations are well below the MAC and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.


Figure D1.Mo²: In SW-07 and SE-07 the molybdenum concentrations are well below the MAC and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.

² Post application mercury and molybdenum concentrations were reported as below laboratory detection limit. Concentrations shown represent one half of the detection limit.

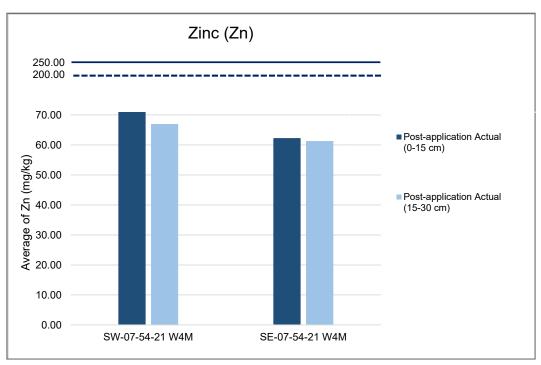

Figure D1.Ni: In SW-07 and SE-07 the nickel concentrations are well below the MAC and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.

Figure D1.Se: In SW-07 and SE-07 the selenium concentrations are well below the MAC and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.

Appendix I – Non-Ag Biosolids Management Report

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 2025 | ISSUED FOR USE

Figure D1.Zn: In SW-07 and SE-07 the zinc concentrations are well below the MAC and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.

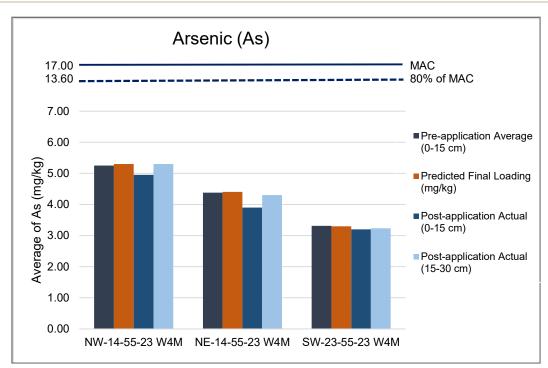
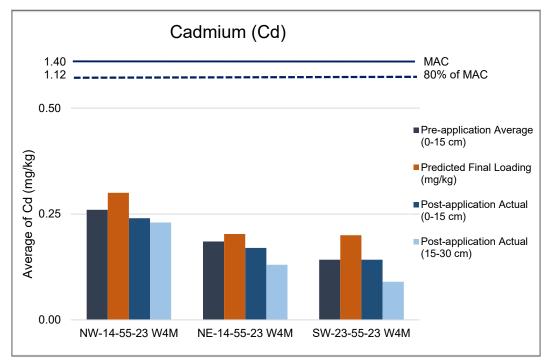



Figure D2.As: All the fields reported lower concentrations for arsenic in the 0-15 cm average after the biosolid application. Additionally, all fields reported a post-application 15-30 cm concentration that was equal to or marginally less than the predicted loading concentration. All reported values are well below the MAC and 80% of MAC thresholds.

Figure D2.Cd: Overall, the predicted loading concentration of cadmium was greater than the post-application averages, all of which are well below the MAC and 80% of MAC thresholds for both the 0-15 cm and 15-30 cm depths.

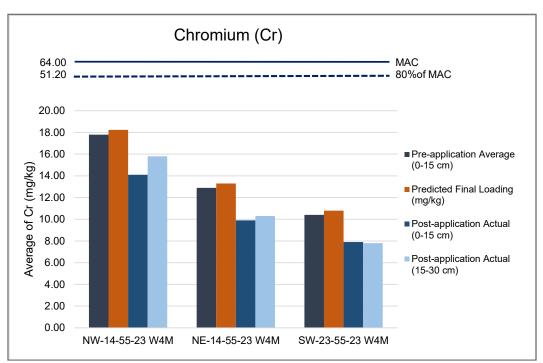
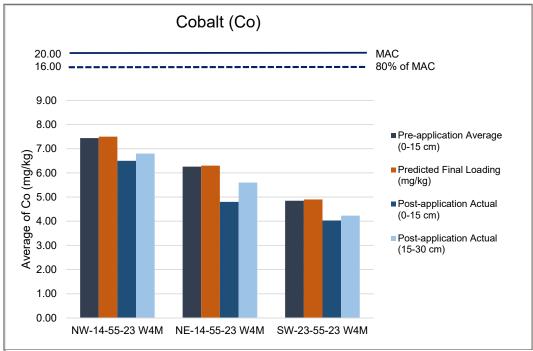



Figure D2.Cr: The 0-15 cm and 15-30 cm post application chromium concentration averages were below the pre-application and predicted loading concentrations. All reported values are well below the MAC and 80% of MAC thresholds.

Figure D2.Co: All the fields reported lower concentrations for cobalt in the 0-15 cm averages post application. Although the post-application 15-30 cm concentration were marginally greater than the post 0-15 cm average, the concentrations were still well below the predicted loading. All reported values are well below the MAC and 80% of MAC thresholds.

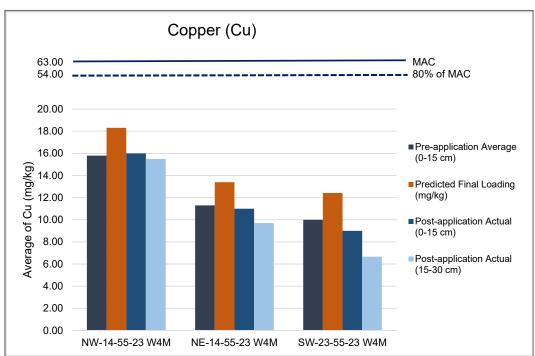
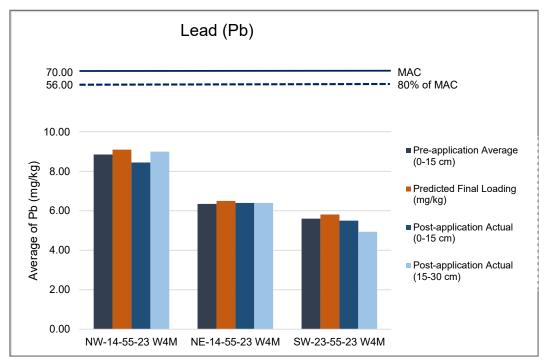



Figure D2.Cu: The predicted loading of copper was greater than the post-application averages. NW-14 was the only field to report a post-application concentration that was marginally greater than the pre-application concentration. All reported values are well below the MAC and 80% of MAC thresholds.

Figure D2.Pb: The predicted loading of lead was greater than the post-application averages. However, in NE-14 and SE-14, the post-application concentration in 0-15 cm was marginally greater than the pre-application concentration. All reported values are well below the MAC and 80% of MAC thresholds.

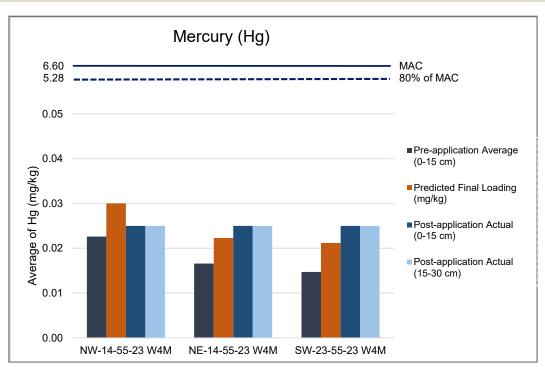
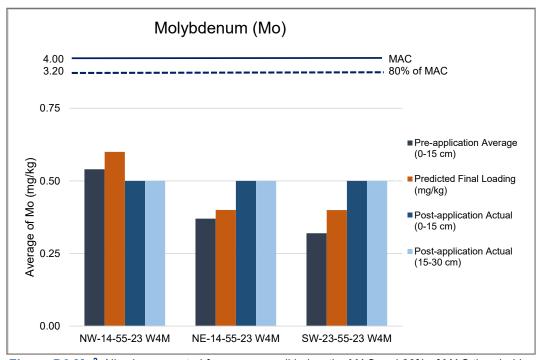
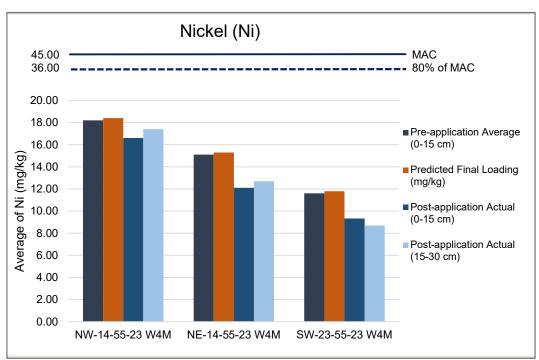
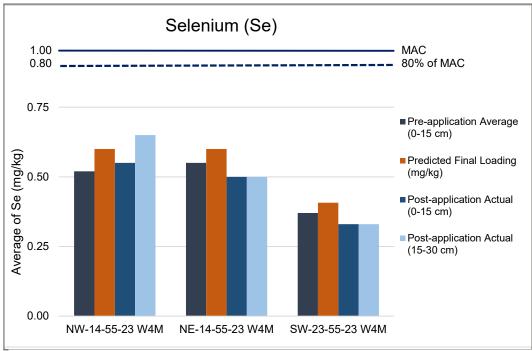


Figure D2.Hg³: All values reported for mercury well below the MAC and 80% of MAC thresholds.


Figure D2.Mo³: All values reported for mercury well below the MAC and 80% of MAC thresholds.

³ Post application mercury and molybdenum concentrations were reported as below laboratory detection limit. Concentrations shown represent one half of the detection limit.

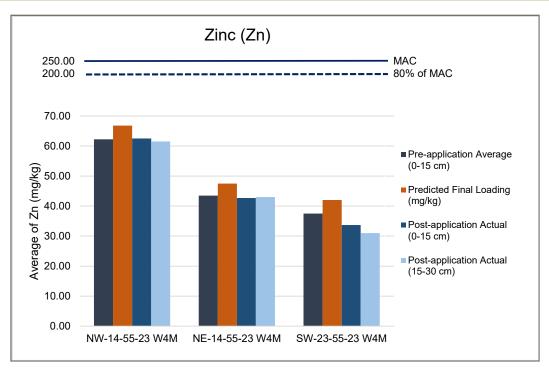

Figure D2.Ni: In all fields the 0-15 cm concentrations decreased after the biosolids application. Although, NW-14 and NE-14 post-application concentrations in 15-30 cm were greater then then the 0-15 cm values, they are below the predicted loading concentration, which is well below the MAC and 80% of MAC thresholds.

Figure D2.Se: In all fields, the post-application concentrations of selenium were less then the predicted loading concentration, except for NW-14 15-30 cm. All reported values are well below the MAC and 80% of MAC thresholds.

Appendix I - Non-Ag Biosolids Management Report

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 2025 | ISSUED FOR USE

Figure D2.Zn: In all fields, the post-application concentrations of zinc are equal to or marginally less then the pre-application concentration, and all of which are well below the MAC and 80% of MAC thresholds. The application of biosolids did not result in an increase of zinc in the field.

Appendix I - Non-Ag Biosolids Management Report

2024 SUMMARY REPORT ON DEWATERED BIOSOLIDS APPLICATION TO MARGINAL LANDS FILE: ENW.BIOS03089-02 | FEBRUARY 2025 | ISSUED FOR USE

APPENDIX E

2024 LABORATORY CERTIFICATES OF ANALYSIS

Appendix I – Non-Ag Biosolids Management Report: +1 (780) 438-5522

7217 Roper Road NW Edmonton, Alberta T6B 3J4, Canada E: info.Edmonton@element.com
W: www.element.com

Report Transmission Cover Page

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: NE-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773456

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071279

Report Type: Final Report

Contact	Company	Address
Accounts Payable	Tetra Tech EBA Inc	14940 - 123 Avenue

Edmonton, AB T5V 1B4

Phone: (780) 451-2121 Fax: (780) 454-5688

Email: EBA.accounts.Payable@tetratech.com

 Delivery
 Format
 Deliverables

 Email - Merge
 PDF
 COC / Invoice

Edmonton Data Tetra Tech EBA Inc 100, 140 Quarry Park Blvd SE

Management

Calgary, AB T2C 3G3

Phone: (403) 203-3355

Email: eba.labdata@tetratech.com,ets.svc.eba_esdat@tetratech.com

Fax:

<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Email	Standard Crosstab With Tabs	Test Report
Email	Standard Reverse Crosstab With Tabs	Test Report
Email - Zip	EBA ESDAT Chemistry File	Test Report
Email - Zip	EBA ESDAT Sample File	Test Report
Email - Zip	Generic ESDAT Header	Test Report

Mark Fawcett Tetra Tech EBA Inc 14940 - 123 Avenue

Edmonton, AB T5V 1B4

Phone: (780) 451-2130 Fax: (780) 454-5688

Email: mark.fawcett@tetratech.com

<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	AB Tier 1 Custom Excel	Test Report
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Email	Standard Crosstab With Tabs	Test Report
Email	Standard Reverse Crosstab With Tabs	Test Report
Email - Merge	PDF	COA / COC
Email - Zip	EBA ESDAT Chemistry File	Test Report
Email - Zip	EBA ESDAT Sample File	Test Report
Email - Zip	Generic ESDAT Header	Test Report

Notes To Clients:

• All wet soil samples received in a soil bag will be disposed 30 days after receipt on 2024-11-30.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

E: info.Edmonton@element.com
W: www.element.com

Analytical Report

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR BIOSOLIDS

Project Location:

LSD: NE-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773456

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071279

Report Type: Final Report

 Reference Number
 1773456-1
 1773456-2
 1773456-3

 Sample Date
 Oct 31, 2024
 Oct 31, 2024
 Oct 31, 2024

 Sample Time
 NA
 NA
 NA

 Sample Location
 NA
 NA
 NA

Sample Description NE-14-02-0-15 NE-14-02-15-30 NE-14-03-0-15

		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	0.52	0.48	1.3	0.2
Metals Strong Acid D	Digestion					
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	2.6	2.9	3.8	0.2
Barium	Strong Acid Extractable	mg/kg	83	81	103	1
Beryllium	Strong Acid Extractable	mg/kg	0.2	0.2	0.4	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.14	0.09	0.16	0.01
Chromium	Strong Acid Extractable	mg/kg	6.7	6.2	9.4	0.5
Cobalt	Strong Acid Extractable	mg/kg	3.4	3.8	4.5	0.1
Copper	Strong Acid Extractable	mg/kg	7	5	10	1
Lead	Strong Acid Extractable	mg/kg	4.8	4.4	5.7	0.1
Mercury	Strong Acid Extractable	mg/kg	< 0.05	< 0.05	< 0.05	0.05
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Nickel	Strong Acid Extractable	mg/kg	8.0	7.8	11.4	0.5
Selenium	Strong Acid Extractable	mg/kg	<0.3	<0.3	0.4	0.3
Silver	Strong Acid Extractable	mg/kg	0.1	<0.1	<0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	< 0.05	0.05	0.07	0.05
Tin	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Uranium	Strong Acid Extractable	mg/kg	<0.5	<0.5	1.2	0.5
Vanadium	Strong Acid Extractable	mg/kg	10.1	10.3	15.9	0.1
Zinc	Strong Acid Extractable	mg/kg	30	30	41	1

E: info.Edmonton@element.com
W: www.element.com

Analytical Report

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS Project Location:

LSD: NE-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773456

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071279

Report Type: Final Report

Reference Number
Sample Date
Sample Time

1773456-4 Oct 31, 2024 NA 1773456-5 Oct 31, 2024 1773456-6 Oct 31, 2024

NA

NA

Sample Location

Sample Description NE-14-03-15-30

NE-14-04-0-15

NE-14-04-15-30

		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	1.4	1.6	1.7	0.2
Metals Strong Acid D	igestion					
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	4.9	5.4	5.1	0.2
Barium	Strong Acid Extractable	mg/kg	126	166	169	1
Beryllium	Strong Acid Extractable	mg/kg	0.5	0.5	0.6	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.13	0.22	0.18	0.01
Chromium	Strong Acid Extractable	mg/kg	11.5	13.6	13.1	0.5
Cobalt	Strong Acid Extractable	mg/kg	6.3	6.5	6.8	0.1
Copper	Strong Acid Extractable	mg/kg	10	16	14	1
Lead	Strong Acid Extractable	mg/kg	6.6	8.6	8.2	0.1
Mercury	Strong Acid Extractable	mg/kg	< 0.05	< 0.05	< 0.05	0.05
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Nickel	Strong Acid Extractable	mg/kg	13.6	17.0	16.8	0.5
Selenium	Strong Acid Extractable	mg/kg	0.5	0.9	0.7	0.3
Silver	Strong Acid Extractable	mg/kg	0.1	0.1	0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.08	0.09	0.10	0.05
Tin	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Uranium	Strong Acid Extractable	mg/kg	1.2	2.2	2.3	0.5
Vanadium	Strong Acid Extractable	mg/kg	19.8	23.3	22.9	0.1
Zinc	Strong Acid Extractable	mg/kg	44	57	55	1

Approved by:

Anthony Weumann, MSc

E: info.Edmonton@element.com W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: NE-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773456

Control Number:

Date Received: Oct 31, 2024 Date Reported: Nov 6, 2024 Report Number: 3071279

Report Type: Final Report

	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Hot Water Soluble												
Batch: 2516083	Boron in gen	neral soil										
Control Sample	6646103	Oct 31, 2024	Boron	mg/kg	0.43						0.37 - 0.65	yes
Control Sample	6646104	Oct 31, 2024	Boron	mg/kg	<0.1						-0.2 - 0.2	yes
Control Sample	6646109	Oct 31, 2024	Boron	mg/kg	0.10						0.09 - 0.11	yes
Replicate	6646105	Oct 31, 2024	Boron	mg/kg	1.4			1.4		2.57	10 % or 0.1 Abs	yes
Metals Stron	g Acid Dige	estion										
Batch: 2516170	Metals ICP (F	Hot Block) in soil	l									
Blank	6646372	Nov 01, 2024	Antimony	μg/L	<0.2	0.2	0.0				0.2	yes
Blank	6646372	Nov 01, 2024	Arsenic	μg/L	<0.2	0.2	0.0				0.2	yes
Blank	6646372	Nov 01, 2024	Barium	μg/L	<1	1	0.0				1	yes
Blank	6646372	Nov 01, 2024	Beryllium	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646372	Nov 01, 2024	Cadmium	μg/L	<0.01	0.01	0.0				0.01	yes
Blank	6646372	Nov 01, 2024	Chromium	μg/L	<0.5	0.5	0.0				0.5	yes
Blank	6646372	Nov 01, 2024	Cobalt	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646372	Nov 01, 2024	Copper	μg/L	<1	1	0.0				1	yes
Blank	6646372	Nov 01, 2024	Lead	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646372	Nov 01, 2024	Mercury	μg/L	< 0.05	0.05					0.05	yes
Blank	6646372	Nov 01, 2024	Molybdenum	μg/L	<1.0	1.0	0.0				1	yes
Blank	6646372	Nov 01, 2024	Nickel	μg/L	<0.5	0.5	0.0				0.5	yes
Blank	6646372	Nov 01, 2024	Selenium	μg/L	<0.3	0.3	0.0				0.3	yes
Blank	6646372	Nov 01, 2024	Silver	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646372	Nov 01, 2024	Thallium	μg/L	< 0.05	0.05					1	yes
Blank	6646372	Nov 01, 2024	Tin	μg/L	<1.0	1.0					0.5	yes
Blank	6646372	Nov 01, 2024	Uranium	μg/L	<0.5	0.5					0.5	yes
Blank	6646372	Nov 01, 2024	Vanadium	μg/L	<0.1	0.1					0.1	yes
Blank	6646372	Nov 01, 2024	Zinc	μg/L	<1	1					1	yes
Control Sample	6646371	Nov 01, 2024	Antimony	mg/kg	40.5						36.1 - 43.9	yes
Control Sample Terms and Conditions:	6646371	Nov 01, 2024	Arsenic	mg/kg	39.5						36.3 - 43.9	yes

E: info.Edmonton@element.com W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: NE-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773456

Control Number:

Date Received: Oct 31, 2024
Date Reported: Nov 6, 2024

Report Number: 3071279
Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Metals Strong	g Acid Dige	stion - Conti	nued									
Control Sample	6646371	Nov 01, 2024	Barium	mg/kg	202						181 - 220	yes
Control Sample	6646371	Nov 01, 2024	Beryllium	mg/kg	20.6						17.4 - 22.2	yes
Control Sample	6646371	Nov 01, 2024	Cadmium	mg/kg	2.05						1.88 - 2.28	yes
Control Sample	6646371	Nov 01, 2024	Chromium	mg/kg	99.0						93.2 - 107	yes
Control Sample	6646371	Nov 01, 2024	Cobalt	mg/kg	19.5						18.3 - 21.5	yes
Control Sample	6646371	Nov 01, 2024	Copper	mg/kg	196						184 - 214	yes
Control Sample	6646371	Nov 01, 2024	Lead	mg/kg	19.6						18.3 - 21.3	yes
Control Sample	6646371	Nov 01, 2024	Mercury	mg/kg	3.03						2.64 - 3.36	yes
Control Sample	6646371	Nov 01, 2024	Molybdenum	mg/kg	198						182.8 - 223.6	yes
Control Sample	6646371	Nov 01, 2024	Nickel	mg/kg	102						92.4 - 106.2	yes
Control Sample	6646371	Nov 01, 2024	Selenium	mg/kg	39.3						35.2 - 44.2	yes
Control Sample	6646371	Nov 01, 2024	Silver	mg/kg	20.0						18 - 22	yes
Control Sample	6646371	Nov 01, 2024	Thallium	mg/kg	9.59						8.87 - 11.03	yes
Control Sample	6646371	Nov 01, 2024	Tin	mg/kg	206						183.1 - 223.3	yes
Control Sample	6646371	Nov 01, 2024	Uranium	mg/kg	104						86 - 116	yes
Control Sample	6646371	Nov 01, 2024	Vanadium	mg/kg	19.8						18 - 21.6	yes
Control Sample	6646371	Nov 01, 2024	Zinc	mg/kg	197						186 - 212	yes
Control Sample	6646373	Nov 01, 2024	Antimony	mg/kg	1.3						0.7 - 1.5	yes
Control Sample	6646373	Nov 01, 2024	Arsenic	mg/kg	11.3						9 - 15	yes
Control Sample	6646373	Nov 01, 2024	Barium	mg/kg	106						86 - 143	yes
Control Sample	6646373	Nov 01, 2024	Cadmium	mg/kg	0.42						0.3 - 0.49	yes
Control Sample	6646373	Nov 01, 2024	Chromium	mg/kg	5.1						4.2 - 7	yes
Control Sample	6646373	Nov 01, 2024	Cobalt	mg/kg	1.7						1.5 - 2.3	yes
Control Sample	6646373	Nov 01, 2024	Copper	mg/kg	23						18 - 29	yes
Control Sample	6646373	Nov 01, 2024	Lead	mg/kg	72.6						56.7 - 94.5	yes
Control Sample	6646373	Nov 01, 2024	Mercury	mg/kg	< 0.05						0.04 - 0.06	yes
Control Sample	6646373	Nov 01, 2024	Molybdenum	mg/kg	3.6						2.9 - 4.7	yes
Control Sample	6646373	Nov 01, 2024	Nickel	mg/kg	5.9						4.7 - 7.8	yes
Control Sample	6646373	Nov 01, 2024	Selenium	mg/kg	<0.3						0 - 0.6	yes
Control Sample	6646373	Nov 01, 2024	Silver	mg/kg	0.2						0.1 - 0.2	yes

E: info.Edmonton@element.com
W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: NE-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773456

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024

Report Number: 3071279

Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Metals Strong	g Acid Dige	estion - Conti	nued									
Control Sample	6646373	Nov 01, 2024	Thallium	mg/kg	0.27						0.21 - 0.36	yes
Control Sample	6646373	Nov 01, 2024	Tin	mg/kg	22.8						17 - 28.4	yes
Control Sample	6646373	Nov 01, 2024	Uranium	mg/kg	11.0						8.8 - 14.8	yes
Control Sample	6646373	Nov 01, 2024	Vanadium	mg/kg	2.8						2.3 - 3.8	yes
Control Sample	6646373	Nov 01, 2024	Zinc	mg/kg	132						108 - 177	yes
Control Sample	6646379	Nov 01, 2024	Beryllium	mg/kg	1.6						1.1 - 1.7	yes
Replicate	6646375	Nov 01, 2024	Antimony	mg/kg	0.5			0.4		2.57	30 % or 0.44 Abs	yes
Replicate	6646375	Nov 01, 2024	Arsenic	mg/kg	5.4			5.2		5.06	30 % or 0.44 Abs	yes
Replicate	6646375	Nov 01, 2024	Barium	mg/kg	127			120		5.71	30 % or 2.2 Abs	yes
Replicate	6646375	Nov 01, 2024	Beryllium	mg/kg	0.4			0.4		0.13	30 % or 0.22 Abs	yes
Replicate	6646375	Nov 01, 2024	Cadmium	mg/kg	0.18			0.16		14.05	30 % or 0.022 Ab	s yes
Replicate	6646375	Nov 01, 2024	Chromium	mg/kg	7.9			8.1		1.61	30 % or 1.1 Abs	yes
Replicate	6646375	Nov 01, 2024	Cobalt	mg/kg	5.6			5.3		4.19	30 % or 0.22 Abs	s yes
Replicate	6646375	Nov 01, 2024	Copper	mg/kg	16			16		2.11	30 % or 2.2 Abs	yes
Replicate	6646375	Nov 01, 2024	Lead	mg/kg	18.2			18.3		0.32	30 % or 0.22 Abs	s yes
Replicate	6646375	Nov 01, 2024	Mercury	mg/kg	0.07			0.09		18.89	30 % or 0.05 Abs	s yes
Replicate	6646375	Nov 01, 2024	Molybdenum	mg/kg	<1.0			<1.0		0.21	30 % or 2.2 Abs	yes
Replicate	6646375	Nov 01, 2024	Nickel	mg/kg	13.4			13.1		2.15	30 % or 1.1 Abs	yes
Replicate	6646375	Nov 01, 2024	Selenium	mg/kg	< 0.3			<0.3		0.21	30 % or 0.66 Abs	s yes
Replicate	6646375	Nov 01, 2024	Silver	mg/kg	<0.1			<0.1		0.21	30 % or 0.22 Abs	s yes
Replicate	6646375	Nov 01, 2024	Thallium	mg/kg	0.10			0.10		2.13	30 % or 0.11 Abs	s yes
Replicate	6646375	Nov 01, 2024	Tin	mg/kg	<1.0			<1.0		0.21	30 % or 2.2 Abs	yes
Replicate	6646375	Nov 01, 2024	Uranium	mg/kg	0.5			0.5		0.94	30 % or 1.1 Abs	yes
Replicate	6646375	Nov 01, 2024	Vanadium	mg/kg	14.3			13.9		2.76	30 % or 0.22 Abs	s yes
Replicate	6646375	Nov 01, 2024	Zinc	mg/kg	43			41		5.48	30 % or 2.2 Abs	yes

SPK Value = Spike Value Ref Value = Reference Value %REC = Percent Recovery
RPD = Relative Percent Difference

Abs = Absolute Difference

F: +1 (780) 438-5522
E: info.Edmonton@element.com
W: www.element.com

Methodology and Notes

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02
Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: NE-14-55-23-W4 P.O.:

Proj. Acct. code:

Lot ID: 1773456

Control Number:

Date Received: Oct 31, 2024 Date Reported: Nov 6, 2024

Report Number: 3071279
Report Type: Final Report

Method	of A	Ana	lysis
--------	------	-----	-------

Method Name	Reference	Method	Date Analysis Started	Location
Boron in general soil	BCELM	* Hot Water Soluble Boron, HWS-Boron	Oct 31, 2024	Element Edmonton - Roper Road
Metals ICP (Hot Block) in soil	EPA	 * Sample Preparation Procedure for Spectrochemical Determination of Total Recoverable Elements, October 1999, 200.2 	Nov 01, 2024	Element Edmonton - Roper Road
Metals ICP (Hot Block) in soil	US EPA	 Determination of Trace Elements in Waters and Wastes by ICP-MS, 200.8 	Nov 01, 2024	Element Edmonton - Roper Road

^{*} Reference Method Modified

References

BCELM B.C. Environmental Laboratory Manual

EPA Environmental Protection Agency Test Methods - US
US EPA US Environmental Protection Agency Test Methods

Appendix I – Non-Ag Biosolids Management Report: +1 (780) 438-5522

7217 Roper Road NW Edmonton, Alberta T6B 3J4, Canada E: info.Edmonton@element.com
W: www.element.com

Report Transmission Cover Page

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: NW-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773457

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071281

Report Type: Final Report

Contact	Company	Address
Accounts Payable	Tetra Tech EBA Inc	14940 - 123 Avenue
		Edmonton, AB T5V 1B4
		Phone: (780) 451-2121 Fax: (780) 454-5688
		Email: EBA.accounts.Payable@tetratech.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email - Merge	PDF	COC / Invoice
Edmonton Data	Tetra Tech EBA Inc	100, 140 Quarry Park Blvd SE
Management		0.1
		Calgary, AB T2C 3G3
		Phone: (403) 203-3355 Fax:
		Email: eba.labdata@tetratech.com,ets.svc.eba_esdat@tetratech.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Email	Standard Crosstab With Tabs	Test Report
Email	Standard Reverse Crosstab With	Tabs Test Report
Email - Zip	EBA ESDAT Chemistry File	Test Report
Email - Zip	EBA ESDAT Sample File	Test Report
Email - Zip	Generic ESDAT Header	Test Report

14940 - 123 Avenue

Edmonton, AB T5V 1B4

Phone: (780) 451-2130 Fax: (780) 454-5688

Email: mark.fawcett@tetratech.com

	<u>elivery</u>	<u>Format</u>	<u>Deliverables</u>
E	mail	AB Tier 1 Custom Excel	Test Report
E	mail	PDF	COA / COC
E	mail	PDF	COC / Test Report
E	mail	Standard Crosstab With Tabs	Test Report
E	mail	Standard Reverse Crosstab With Tabs	Test Report
E	mail - Merge	PDF	COA / COC
E	mail - Zip	EBA ESDAT Chemistry File	Test Report
E	mail - Zip	EBA ESDAT Sample File	Test Report
E	mail - Zip	Generic ESDAT Header	Test Report

Notes To Clients:

Mark Fawcett

• All wet soil samples received in a soil bag will be disposed 30 days after receipt on 2024-11-30.

Tetra Tech EBA Inc

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

E: info.Edmonton@element.com
W: www.element.com

Analytical Report

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: NW-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773457

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071281

Report Type: Final Report

 Reference Number
 1773457-1
 1773457-2
 1773457-3

 Sample Date
 Oct 31, 2024
 Oct 31, 2024
 Oct 31, 2024

 Sample Time
 NA
 NA
 NA

 Sample Location
 NA
 NA
 NA

Sample Description NW-14-01-0-15 NW-14-01-15-30 NW-14-02-0-15

		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	2.16	1.1	1.7	0.2
Metals Strong Acid Di	gestion					
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	5.1	5.3	4.8	0.2
Barium	Strong Acid Extractable	mg/kg	158	160	155	1
Beryllium	Strong Acid Extractable	mg/kg	0.6	0.6	0.6	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.26	0.25	0.22	0.01
Chromium	Strong Acid Extractable	mg/kg	14.2	14.6	14.0	0.5
Cobalt	Strong Acid Extractable	mg/kg	6.6	7.3	6.4	0.1
Copper	Strong Acid Extractable	mg/kg	16	16	16	1
Lead	Strong Acid Extractable	mg/kg	8.2	9.6	8.7	0.1
Mercury	Strong Acid Extractable	mg/kg	< 0.05	< 0.05	< 0.05	0.05
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Nickel	Strong Acid Extractable	mg/kg	16.7	17.0	16.5	0.5
Selenium	Strong Acid Extractable	mg/kg	0.7	0.6	0.6	0.3
Silver	Strong Acid Extractable	mg/kg	0.2	0.2	0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.10	0.11	0.10	0.05
Tin	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Uranium	Strong Acid Extractable	mg/kg	2.3	1.9	2.2	0.5
Vanadium	Strong Acid Extractable	mg/kg	23.9	25.4	23.9	0.1
Zinc	Strong Acid Extractable	mg/kg	63	64	62	1

E: info.Edmonton@element.com W: www.element.com

Analytical Report

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

OLSTAD_EPCOR

BIOSOLIDS

NW-14-55-23-W4

P.O.: Proj. Acct. code:

Project Name:

LSD:

Project Location:

Lot ID: 1773457

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071281

Report Type: Final Report

Reference Number Sample Date

1773457-4 Oct 31, 2024

Sample Time NA

Sample Location Sample Description NW-14-02-15-30

> Matrix Soil

		Matrix	5011			
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	2.17			0.2
Metals Strong Acid Dig	gestion					
Antimony	Strong Acid Extractable	mg/kg	<0.2			0.2
Arsenic	Strong Acid Extractable	mg/kg	5.2			0.2
Barium	Strong Acid Extractable	mg/kg	151			1
Beryllium	Strong Acid Extractable	mg/kg	0.6			0.1
Cadmium	Strong Acid Extractable	mg/kg	0.20			0.01
Chromium	Strong Acid Extractable	mg/kg	16.9			0.5
Cobalt	Strong Acid Extractable	mg/kg	6.3			0.1
Copper	Strong Acid Extractable	mg/kg	15			1
Lead	Strong Acid Extractable	mg/kg	8.4			0.1
Mercury	Strong Acid Extractable	mg/kg	< 0.05			0.05
Molybdenum	Strong Acid Extractable	mg/kg	<1.0			1.0
Nickel	Strong Acid Extractable	mg/kg	17.8			0.5
Selenium	Strong Acid Extractable	mg/kg	0.5			0.3
Silver	Strong Acid Extractable	mg/kg	0.2			0.1
Thallium	Strong Acid Extractable	mg/kg	0.11			0.05
Tin	Strong Acid Extractable	mg/kg	<1.0			1.0
Uranium	Strong Acid Extractable	mg/kg	1.9			0.5
Vanadium	Strong Acid Extractable	mg/kg	24.7			0.1
Zinc	Strong Acid Extractable	mg/kg	59			1

Approved by:

nthony Weuman Anthony Neumann, MSc

E: info.Edmonton@element.com
W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: NW-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773457

Control Number:

Date Received: Oct 31, 2024
Date Reported: Nov 6, 2024
Report Number: 3071281

Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Hot Water So	luble											
Batch: 2516083 -	Boron in gen	eral soil										
Control Sample	6646103	Oct 31, 2024	Boron	mg/kg	0.43						0.37 - 0.65	yes
Control Sample	6646104	Oct 31, 2024	Boron	mg/kg	<0.1						-0.2 - 0.2	yes
Control Sample	6646109	Oct 31, 2024	Boron	mg/kg	0.10						0.09 - 0.11	yes
Replicate	6646105	Oct 31, 2024	Boron	mg/kg	1.4			1.4		2.57	10 % or 0.1 Abs	yes
Metals Strong	g Acid Dige	estion										
Batch: 2516170 -	Metals ICP (F	lot Block) in soil	I									
Blank	6646372	Nov 01, 2024	Antimony	μg/L	<0.2	0.2	0.0				0.2	yes
Blank	6646372	Nov 01, 2024	Arsenic	μg/L	<0.2	0.2	0.0				0.2	yes
Blank	6646372	Nov 01, 2024	Barium	μg/L	<1	1	0.0				1	yes
Blank	6646372	Nov 01, 2024	Beryllium	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646372	Nov 01, 2024	Cadmium	μg/L	<0.01	0.01	0.0				0.01	yes
Blank	6646372	Nov 01, 2024	Chromium	μg/L	<0.5	0.5	0.0				0.5	yes
Blank	6646372	Nov 01, 2024	Cobalt	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646372	Nov 01, 2024	Copper	μg/L	<1	1	0.0				1	yes
Blank	6646372	Nov 01, 2024	Lead	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646372	Nov 01, 2024	Mercury	μg/L	< 0.05	0.05					0.05	yes
Blank	6646372	Nov 01, 2024	Molybdenum	μg/L	<1.0	1.0	0.0				1	yes
Blank	6646372	Nov 01, 2024	Nickel	μg/L	<0.5	0.5	0.0				0.5	yes
Blank	6646372	Nov 01, 2024	Selenium	μg/L	<0.3	0.3	0.0				0.3	yes
Blank	6646372	Nov 01, 2024	Silver	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646372	Nov 01, 2024	Thallium	μg/L	< 0.05	0.05					1	yes
Blank	6646372	Nov 01, 2024	Tin	μg/L	<1.0	1.0					0.5	yes
Blank	6646372	Nov 01, 2024	Uranium	μg/L	<0.5	0.5					0.5	yes
Blank	6646372	Nov 01, 2024	Vanadium	μg/L	<0.1	0.1					0.1	yes
Blank	6646372	Nov 01, 2024	Zinc	μg/L	<1	1					1	yes
Control Sample	6646371	Nov 01, 2024	Antimony	mg/kg	40.5						36.1 - 43.9	yes
Control Sample	6646371	Nov 01, 2024	Arsenic	mg/kg	39.5						36.3 - 43.9	yes

E: info.Edmonton@element.com
W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: NW-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773457

Control Number:

Date Received: Oct 31, 2024
Date Reported: Nov 6, 2024
Report Number: 3071281

Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Metals Strong	g Acid Dige	estion - Conti	nued									
Control Sample	6646371	Nov 01, 2024	Barium	mg/kg	202						181 - 220	yes
Control Sample	6646371	Nov 01, 2024	Beryllium	mg/kg	20.6						17.4 - 22.2	yes
Control Sample	6646371	Nov 01, 2024	Cadmium	mg/kg	2.05						1.88 - 2.28	yes
Control Sample	6646371	Nov 01, 2024	Chromium	mg/kg	99.0						93.2 - 107	yes
Control Sample	6646371	Nov 01, 2024	Cobalt	mg/kg	19.5						18.3 - 21.5	yes
Control Sample	6646371	Nov 01, 2024	Copper	mg/kg	196						184 - 214	yes
Control Sample	6646371	Nov 01, 2024	Lead	mg/kg	19.6						18.3 - 21.3	yes
Control Sample	6646371	Nov 01, 2024	Mercury	mg/kg	3.03						2.64 - 3.36	yes
Control Sample	6646371	Nov 01, 2024	Molybdenum	mg/kg	198						182.8 - 223.6	yes
Control Sample	6646371	Nov 01, 2024	Nickel	mg/kg	102						92.4 - 106.2	yes
Control Sample	6646371	Nov 01, 2024	Selenium	mg/kg	39.3						35.2 - 44.2	yes
Control Sample	6646371	Nov 01, 2024	Silver	mg/kg	20.0						18 - 22	yes
Control Sample	6646371	Nov 01, 2024	Thallium	mg/kg	9.59						8.87 - 11.03	yes
Control Sample	6646371	Nov 01, 2024	Tin	mg/kg	206						183.1 - 223.3	yes
Control Sample	6646371	Nov 01, 2024	Uranium	mg/kg	104						86 - 116	yes
Control Sample	6646371	Nov 01, 2024	Vanadium	mg/kg	19.8						18 - 21.6	yes
Control Sample	6646371	Nov 01, 2024	Zinc	mg/kg	197						186 - 212	yes
Control Sample	6646373	Nov 01, 2024	Antimony	mg/kg	1.3						0.7 - 1.5	yes
Control Sample	6646373	Nov 01, 2024	Arsenic	mg/kg	11.3						9 - 15	yes
Control Sample	6646373	Nov 01, 2024	Barium	mg/kg	106						86 - 143	yes
Control Sample	6646373	Nov 01, 2024	Cadmium	mg/kg	0.42						0.3 - 0.49	yes
Control Sample	6646373	Nov 01, 2024	Chromium	mg/kg	5.1						4.2 - 7	yes
Control Sample	6646373	Nov 01, 2024	Cobalt	mg/kg	1.7						1.5 - 2.3	yes
Control Sample	6646373	Nov 01, 2024	Copper	mg/kg	23						18 - 29	yes
Control Sample	6646373	Nov 01, 2024	Lead	mg/kg	72.6						56.7 - 94.5	yes
Control Sample	6646373	Nov 01, 2024	Mercury	mg/kg	< 0.05						0.04 - 0.06	yes
Control Sample	6646373	Nov 01, 2024	Molybdenum	mg/kg	3.6						2.9 - 4.7	yes
Control Sample	6646373	Nov 01, 2024	Nickel	mg/kg	5.9						4.7 - 7.8	yes
Control Sample	6646373	Nov 01, 2024	Selenium	mg/kg	<0.3						0 - 0.6	yes
Control Sample	6646373	Nov 01, 2024	Silver	mg/kg	0.2						0.1 - 0.2	yes

E: info.Edmonton@element.com
W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: NW-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773457

Control Number:

Date Received: Oct 31, 2024 Date Reported: Nov 6, 2024

Report Number: 3071281
Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Metals Strong	Acid Dige	stion - Conti	nued									
Control Sample	6646373	Nov 01, 2024	Thallium	mg/kg	0.27						0.21 - 0.36	yes
Control Sample	6646373	Nov 01, 2024	Tin	mg/kg	22.8						17 - 28.4	yes
Control Sample	6646373	Nov 01, 2024	Uranium	mg/kg	11.0						8.8 - 14.8	yes
Control Sample	6646373	Nov 01, 2024	Vanadium	mg/kg	2.8						2.3 - 3.8	yes
Control Sample	6646373	Nov 01, 2024	Zinc	mg/kg	132						108 - 177	yes
Control Sample	6646379	Nov 01, 2024	Beryllium	mg/kg	1.6						1.1 - 1.7	yes
Replicate	6646375	Nov 01, 2024	Antimony	mg/kg	0.5			0.4		2.57	30 % or 0.44 Abs	yes
Replicate	6646375	Nov 01, 2024	Arsenic	mg/kg	5.4			5.2		5.06	30 % or 0.44 Abs	yes
Replicate	6646375	Nov 01, 2024	Barium	mg/kg	127			120		5.71	30 % or 2.2 Abs	yes
Replicate	6646375	Nov 01, 2024	Beryllium	mg/kg	0.4			0.4		0.13	30 % or 0.22 Abs	yes
Replicate	6646375	Nov 01, 2024	Cadmium	mg/kg	0.18			0.16		14.05	30 % or 0.022 Abs	s yes
Replicate	6646375	Nov 01, 2024	Chromium	mg/kg	7.9			8.1		1.61	30 % or 1.1 Abs	yes
Replicate	6646375	Nov 01, 2024	Cobalt	mg/kg	5.6			5.3		4.19	30 % or 0.22 Abs	yes
Replicate	6646375	Nov 01, 2024	Copper	mg/kg	16			16		2.11	30 % or 2.2 Abs	yes
Replicate	6646375	Nov 01, 2024	Lead	mg/kg	18.2			18.3		0.32	30 % or 0.22 Abs	yes
Replicate	6646375	Nov 01, 2024	Mercury	mg/kg	0.07			0.09		18.89	30 % or 0.05 Abs	yes
Replicate	6646375	Nov 01, 2024	Molybdenum	mg/kg	<1.0			<1.0		0.21	30 % or 2.2 Abs	yes
Replicate	6646375	Nov 01, 2024	Nickel	mg/kg	13.4			13.1		2.15	30 % or 1.1 Abs	yes
Replicate	6646375	Nov 01, 2024	Selenium	mg/kg	<0.3			< 0.3		0.21	30 % or 0.66 Abs	yes
Replicate	6646375	Nov 01, 2024	Silver	mg/kg	<0.1			<0.1		0.21	30 % or 0.22 Abs	yes
Replicate	6646375	Nov 01, 2024	Thallium	mg/kg	0.10			0.10		2.13	30 % or 0.11 Abs	yes
Replicate	6646375	Nov 01, 2024	Tin	mg/kg	<1.0			<1.0		0.21	30 % or 2.2 Abs	yes
Replicate	6646375	Nov 01, 2024	Uranium	mg/kg	0.5			0.5		0.94	30 % or 1.1 Abs	yes
Replicate	6646375	Nov 01, 2024	Vanadium	mg/kg	14.3			13.9		2.76	30 % or 0.22 Abs	yes
Replicate	6646375	Nov 01, 2024	Zinc	mg/kg	43			41		5.48	30 % or 2.2 Abs	yes

SPK Value = Spike Value Ref Value = Reference Value %REC = Percent Recovery

RPD = Relative Percent Difference

Abs = Absolute Difference

F: +1 (780) 438-5522
E: info.Edmonton@element.com
W: www.element.com

Methodology and Notes

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02
Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: NW-14-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773457

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071281

Report Type: Final Report

Method of Analysis

moundar of 7 mary ord				
Method Name	Reference	Method	Date Analysis Started	Location
Boron in general soil	BCELM	* Hot Water Soluble Boron, HWS-Boron	Oct 31, 2024	Element Edmonton - Roper Road
Metals ICP (Hot Block) in soil	EPA	* Sample Preparation Procedure for Spectrochemical Determination of Total Recoverable Elements, October 1999, 200.2	Nov 01, 2024	Element Edmonton - Roper Road
Metals ICP (Hot Block) in soil	US EPA	 Determination of Trace Elements in Waters and Wastes by ICP-MS, 200.8 	Nov 01, 2024	Element Edmonton - Roper Road

^{*} Reference Method Modified

References

BCELM B.C. Environmental Laboratory Manual

EPA Environmental Protection Agency Test Methods - US
US EPA US Environmental Protection Agency Test Methods

Appendix I – Non-Ag Biosolids Management Report: +1 (780) 438-5522

7217 Roper Road NW Edmonton, Alberta T6B 3J4, Canada E: info.Edmonton@element.com
W: www.element.com

Report Transmission Cover Page

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR BIOSOLIDS

Project Location:

LSD: SW-23-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773458

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071282

Report Type: Final Report

Contact	Company	Address						
Accounts Payable	Tetra Tech EBA Inc	14940 - 123 Avenue						
		Edmonton, AB T5V 1B4						
		Phone: (780) 451-2121 Fax: (780) 454-5688						
		Email: EBA.accounts.Payable@tetratech.com						
Delivery	<u>Format</u>	<u>Deliverables</u>						
Email - Merge	PDF	COC / Invoice						
Edmonton Data	Tetra Tech EBA Inc	100, 140 Quarry Park Blvd SE						
Management		Calgary, AB T2C 3G3						
		Phone: (403) 203-3355 Fax:						
		Email: eba.labdata@tetratech.com,ets.svc.eba_esdat@tetratech.com						
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>						
Email	PDF	COA / COC						
Email	PDF	COC / Test Report						
Email	Standard Crosstab With Tabs	Test Report						
Email	Standard Reverse Crosstab With T	abs Test Report						

Mark Fawcett Tetra Tech EBA Inc 14940 - 123 Avenue

Edmonton, AB T5V 1B4

Phone: (780) 451-2130 Fax: (780) 454-5688

Email: mark.fawcett@tetratech.com

Test Report

Test Report

Test Report

Delivery	<u>Format</u>	<u>Deliverables</u>
Email	AB Tier 1 Custom Excel	Test Report
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Email	Standard Crosstab With Tabs	Test Report
Email	Standard Reverse Crosstab With Tabs	Test Report
Email - Merge	PDF	COA / COC
Email - Zip	EBA ESDAT Chemistry File	Test Report
Email - Zip	EBA ESDAT Sample File	Test Report
Email - Zip	Generic ESDAT Header	Test Report

EBA ESDAT Chemistry File

EBA ESDAT Sample File

Generic ESDAT Header

Notes To Clients:

Email - Zip

Email - Zip

Email - Zip

• All wet soil samples received in a soil bag will be disposed 30 days after receipt on 2024-11-30.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

H: +1 (780) 438-5522 E: info.Edmonton@element.com W: www.element.com

Analytical Report

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR BIOSOLIDS

Project Location:

LSD: SW-23-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773458

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071282

Report Type: Final Report

 Reference Number
 1773458-1
 1773458-2
 1773458-3

 Sample Date
 Oct 31, 2024
 Oct 31, 2024
 Oct 31, 2024

 Sample Time
 NA
 NA
 NA

Sample Location

Sample Description SW-23-01-0-15 SW-23-01-15-30 SW-23-02-0-15

Matrix Soil Soil Soil Nominal Detection Analyte **Units** Results Results Results Limit **Hot Water Soluble** 0.2 Boron Hot Water Soluble 0.79 0.53 1.2 mg/kg **Metals Strong Acid Digestion** Antimony Strong Acid Extractable <0.2 <0.2 <0.2 0.2 mg/kg Arsenic Strong Acid Extractable 2.9 2.8 3.4 0.2 mg/kg 80 Barium Strong Acid Extractable 85 111 1 mg/kg Strong Acid Extractable Bervllium mg/kg 0.2 0.3 0.4 0.1 0.12 0.01 Cadmium Strong Acid Extractable 0.07 0.17 mg/kg Chromium Strong Acid Extractable mg/kg 6.6 6.5 8.4 0.5 Cobalt 3.5 0.1 Strong Acid Extractable mg/kg 4.0 4.1 Strong Acid Extractable 7 5 10 1 Copper mg/kg Lead Strong Acid Extractable mg/kg 4.6 4.1 6.0 0.1 Strong Acid Extractable < 0.05 < 0.05 < 0.05 0.05 Mercury mg/kg Molybdenum Strong Acid Extractable mg/kg <1.0 <1.0 <1.0 1.0 Nickel Strong Acid Extractable 8.1 7.6 9.7 0.5 mg/kg Selenium Strong Acid Extractable <0.3 <0.3 0.4 0.3 mg/kg 0.1 Silver Strong Acid Extractable < 0.1 <0.1 <0.1 mg/kg Thallium < 0.05 0.05 0.05 Strong Acid Extractable mg/kg 0.06 Tin Strong Acid Extractable <1.0 <1.0 <1.0 1.0 mg/kg Uranium Strong Acid Extractable mg/kg 0.6 0.6 0.8 0.5 Vanadium 11.0 11.1 0.1 Strong Acid Extractable mg/kg 14.3 Zinc Strong Acid Extractable mg/kg 28 25 37 1

E: info.Edmonton@element.com
W: www.element.com

Analytical Report

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR BIOSOLIDS

Project Location:

LSD: SW-23-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773458

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071282

Report Type: Final Report

Reference Number Sample Date Sample Time 1773458-4 Oct 31, 2024 NA

0-:1

1773458-5 Oct 31, 2024 1773458-6 Oct 31, 2024

NA

NA

Sample Location

Sample Description SW-23-02-15-30

N/ -4=:--

SW-23-03-0-15

SW-23-03-15-30

		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	0.80	0.86	0.78	0.2
Metals Strong Acid D	igestion					
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	3.1	3.3	3.8	0.2
Barium	Strong Acid Extractable	mg/kg	89	119	124	1
Beryllium	Strong Acid Extractable	mg/kg	0.3	0.3	0.3	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.11	0.13	0.09	0.01
Chromium	Strong Acid Extractable	mg/kg	7.8	8.7	9.1	0.5
Cobalt	Strong Acid Extractable	mg/kg	3.5	4.5	5.2	0.1
Copper	Strong Acid Extractable	mg/kg	7	10	8	1
Lead	Strong Acid Extractable	mg/kg	4.9	5.9	5.8	0.1
Mercury	Strong Acid Extractable	mg/kg	< 0.05	< 0.05	< 0.05	0.05
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Nickel	Strong Acid Extractable	mg/kg	7.8	10.2	10.7	0.5
Selenium	Strong Acid Extractable	mg/kg	0.4	0.3	0.3	0.3
Silver	Strong Acid Extractable	mg/kg	<0.1	<0.1	0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.06	0.06	0.07	0.05
Tin	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Uranium	Strong Acid Extractable	mg/kg	0.6	0.7	0.6	0.5
Vanadium	Strong Acid Extractable	mg/kg	12.6	13.9	14.9	0.1
Zinc	Strong Acid Extractable	mg/kg	30	36	38	1

Approved by:

Anthony Weumann, MSc

E: info.Edmonton@element.com W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SW-23-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773458

Control Number:

Date Received: Oct 31, 2024
Date Reported: Nov 6, 2024
Report Number: 3071282

Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Hot Water So	luble											
Batch: 2516083 -	· Boron in ger	neral soil										
Control Sample	6646103	Oct 31, 2024	Boron	mg/kg	0.43						0.37 - 0.65	yes
Control Sample	6646104	Oct 31, 2024	Boron	mg/kg	<0.1						-0.2 - 0.2	yes
Control Sample	6646109	Oct 31, 2024	Boron	mg/kg	0.10						0.09 - 0.11	yes
Replicate	6646105	Oct 31, 2024	Boron	mg/kg	1.4			1.4		2.57	10 % or 0.1 Abs	yes
Metals Strong	g Acid Dige	estion										
Batch: 2516170 -	· Metals ICP (I	Hot Block) in soi	I									
Blank	6646378	Nov 01, 2024	Antimony	μg/L	<0.2	0.2	0.0				0.2	yes
Blank	6646378	Nov 01, 2024	Arsenic	μg/L	<0.2	0.2	0.0				0.2	yes
Blank	6646378	Nov 01, 2024	Barium	μg/L	<1	1	0.0				1	yes
Blank	6646378	Nov 01, 2024	Beryllium	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646378	Nov 01, 2024	Cadmium	μg/L	<0.01	0.01	0.0				0.01	yes
Blank	6646378	Nov 01, 2024	Chromium	μg/L	<0.5	0.5	0.0				0.5	yes
Blank	6646378	Nov 01, 2024	Cobalt	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646378	Nov 01, 2024	Copper	μg/L	<1	1	0.0				1	yes
Blank	6646378	Nov 01, 2024	Lead	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646378	Nov 01, 2024	Mercury	μg/L	< 0.05	0.05					0.05	yes
Blank	6646378	Nov 01, 2024	Molybdenum	μg/L	<1.0	1.0	0.0				1	yes
Blank	6646378	Nov 01, 2024	Nickel	μg/L	<0.5	0.5	0.0				0.5	yes
Blank	6646378	Nov 01, 2024	Selenium	μg/L	<0.3	0.3	0.0				0.3	yes
Blank	6646378	Nov 01, 2024	Silver	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646378	Nov 01, 2024	Thallium	μg/L	< 0.05	0.05					1	yes
Blank	6646378	Nov 01, 2024	Tin	μg/L	<1.0	1.0					0.5	yes
Blank	6646378	Nov 01, 2024	Uranium	μg/L	<0.5	0.5					0.5	yes
Blank	6646378	Nov 01, 2024	Vanadium	μg/L	<0.1	0.1					0.1	yes
Blank	6646378	Nov 01, 2024	Zinc	μg/L	<1	1					1	yes
Control Sample	6646377	Nov 01, 2024	Antimony	mg/kg	40.3						36.1 - 43.9	yes
Control Sample	6646377	Nov 01, 2024	Arsenic	mg/kg	39.5						36.3 - 43.9	yes

E: info.Edmonton@element.com
W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SW-23-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773458

Control Number:

Date Received: Oct 31, 2024
Date Reported: Nov 6, 2024

Report Number: 3071282 Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Metals Strong	g Acid Dige	stion - Conti	nued									
Control Sample	6646377	Nov 01, 2024	Barium	mg/kg	200						181 - 220	yes
Control Sample	6646377	Nov 01, 2024	Beryllium	mg/kg	20.0						17.4 - 22.2	yes
Control Sample	6646377	Nov 01, 2024	Cadmium	mg/kg	2.10						1.88 - 2.28	yes
Control Sample	6646377	Nov 01, 2024	Chromium	mg/kg	101						93.2 - 107	yes
Control Sample	6646377	Nov 01, 2024	Cobalt	mg/kg	19.5						18.3 - 21.5	yes
Control Sample	6646377	Nov 01, 2024	Copper	mg/kg	198						184 - 214	yes
Control Sample	6646377	Nov 01, 2024	Lead	mg/kg	19.8						18.3 - 21.3	yes
Control Sample	6646377	Nov 01, 2024	Mercury	mg/kg	3.02						2.64 - 3.36	yes
Control Sample	6646377	Nov 01, 2024	Molybdenum	mg/kg	202						182.8 - 223.6	yes
Control Sample	6646377	Nov 01, 2024	Nickel	mg/kg	99.9						92.4 - 106.2	yes
Control Sample	6646377	Nov 01, 2024	Selenium	mg/kg	39.6						35.2 - 44.2	yes
Control Sample	6646377	Nov 01, 2024	Silver	mg/kg	19.8						18 - 22	yes
Control Sample	6646377	Nov 01, 2024	Thallium	mg/kg	9.87						8.87 - 11.03	yes
Control Sample	6646377	Nov 01, 2024	Tin	mg/kg	206						183.1 - 223.3	yes
Control Sample	6646377	Nov 01, 2024	Uranium	mg/kg	100						86 - 116	yes
Control Sample	6646377	Nov 01, 2024	Vanadium	mg/kg	19.7						18 - 21.6	yes
Control Sample	6646377	Nov 01, 2024	Zinc	mg/kg	198						186 - 212	yes
Control Sample	6646379	Nov 01, 2024	Antimony	mg/kg	1.1						0.7 - 1.5	yes
Control Sample	6646379	Nov 01, 2024	Arsenic	mg/kg	11.7						9 - 15	yes
Control Sample	6646379	Nov 01, 2024	Barium	mg/kg	111						86 - 143	yes
Control Sample	6646379	Nov 01, 2024	Beryllium	mg/kg	1.6						1.1 - 1.7	yes
Control Sample	6646379	Nov 01, 2024	Cadmium	mg/kg	0.41						0.3 - 0.49	yes
Control Sample	6646379	Nov 01, 2024	Chromium	mg/kg	5.4						4.2 - 7	yes
Control Sample	6646379	Nov 01, 2024	Cobalt	mg/kg	1.8						1.5 - 2.3	yes
Control Sample	6646379	Nov 01, 2024	Copper	mg/kg	21						18 - 29	yes
Control Sample	6646379	Nov 01, 2024	Lead	mg/kg	76.0						56.7 - 94.5	yes
Control Sample	6646379	Nov 01, 2024	Mercury	mg/kg	< 0.05						0.04 - 0.06	yes
Control Sample	6646379	Nov 01, 2024	Molybdenum	mg/kg	3.8						2.9 - 4.7	yes
Control Sample	6646379	Nov 01, 2024	Nickel	mg/kg	5.9						4.7 - 7.8	yes
Control Sample	6646379	Nov 01, 2024	Selenium	mg/kg	<0.3						0 - 0.6	yes

E: info.Edmonton@element.com
W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SW-23-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773458

Control Number:

Date Received: Oct 31, 2024 Date Reported: Nov 6, 2024

Report Number: 3071282

Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Metals Strong	g Acid Dige	stion - Conti	nued									
Control Sample	6646379	Nov 01, 2024	Silver	mg/kg	0.2						0.1 - 0.2	yes
Control Sample	6646379	Nov 01, 2024	Thallium	mg/kg	0.28						0.21 - 0.36	yes
Control Sample	6646379	Nov 01, 2024	Tin	mg/kg	24.1						17 - 28.4	yes
Control Sample	6646379	Nov 01, 2024	Uranium	mg/kg	12.1						8.8 - 14.8	yes
Control Sample	6646379	Nov 01, 2024	Vanadium	mg/kg	3.0						2.3 - 3.8	yes
Control Sample	6646379	Nov 01, 2024	Zinc	mg/kg	135						108 - 177	yes
Replicate	6646376	Nov 01, 2024	Antimony	mg/kg	<0.2			<0.2		0.61	30 % or 0.44 Abs	yes
Replicate	6646376	Nov 01, 2024	Arsenic	mg/kg	5.0			5.1		3	30 % or 0.44 Abs	yes
Replicate	6646376	Nov 01, 2024	Barium	mg/kg	160			158		0.94	30 % or 2.2 Abs	yes
Replicate	6646376	Nov 01, 2024	Beryllium	mg/kg	0.6			0.6		6.5	30 % or 0.22 Abs	yes
Replicate	6646376	Nov 01, 2024	Cadmium	mg/kg	0.25			0.26		4.37	30 % or 0.022 Ab	s yes
Replicate	6646376	Nov 01, 2024	Chromium	mg/kg	13.7			14.2		3.27	30 % or 1.1 Abs	yes
Replicate	6646376	Nov 01, 2024	Cobalt	mg/kg	6.6			6.6		0.11	30 % or 0.22 Abs	yes
Replicate	6646376	Nov 01, 2024	Copper	mg/kg	17			16		8.9	30 % or 2.2 Abs	yes
Replicate	6646376	Nov 01, 2024	Lead	mg/kg	8.6			8.2		5.12	30 % or 0.22 Abs	yes
Replicate	6646376	Nov 01, 2024	Mercury	mg/kg	< 0.05			< 0.05		0.61	30 % or 0.05 Abs	yes
Replicate	6646376	Nov 01, 2024	Molybdenum	mg/kg	<1.0			<1.0		0.61	30 % or 2.2 Abs	yes
Replicate	6646376	Nov 01, 2024	Nickel	mg/kg	16.6			16.7		0.91	30 % or 1.1 Abs	yes
Replicate	6646376	Nov 01, 2024	Selenium	mg/kg	0.6			0.7		8.82	30 % or 0.66 Abs	yes
Replicate	6646376	Nov 01, 2024	Silver	mg/kg	0.2			0.2		3.98	30 % or 0.22 Abs	yes
Replicate	6646376	Nov 01, 2024	Thallium	mg/kg	0.10			0.10		3.62	30 % or 0.11 Abs	yes
Replicate	6646376	Nov 01, 2024	Tin	mg/kg	<1.0			<1.0		0.61	30 % or 2.2 Abs	yes
Replicate	6646376	Nov 01, 2024	Uranium	mg/kg	2.6			2.3		10.58	30 % or 1.1 Abs	yes
Replicate	6646376	Nov 01, 2024	Vanadium	mg/kg	23.5			23.9		2.06	30 % or 0.22 Abs	yes
Replicate	6646376	Nov 01, 2024	Zinc	mg/kg	62			63		2.73	30 % or 2.2 Abs	yes

SPK Value = Spike Value Ref Value = Reference Value %REC = Percent Recovery
RPD = Relative Percent Difference

Abs = Absolute Difference

F: +1 (780) 438-5522
E: info.Edmonton@element.com
W: www.element.com

Methodology and Notes

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02
Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SW-23-55-23-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773458

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071282

Report Type: Final Report

Method of Analysis

moundar of 7 mary ord				
Method Name	Reference	Method	Date Analysis Started	Location
Boron in general soil	BCELM	* Hot Water Soluble Boron, HWS-Boron	Oct 31, 2024	Element Edmonton - Roper Road
Metals ICP (Hot Block) in soil	EPA	* Sample Preparation Procedure for Spectrochemical Determination of Total Recoverable Elements, October 1999, 200.2	Nov 01, 2024	Element Edmonton - Roper Road
Metals ICP (Hot Block) in soil	US EPA	 Determination of Trace Elements in Waters and Wastes by ICP-MS, 200.8 	Nov 01, 2024	Element Edmonton - Roper Road

^{*} Reference Method Modified

References

BCELM B.C. Environmental Laboratory Manual

EPA Environmental Protection Agency Test Methods - US
US EPA US Environmental Protection Agency Test Methods

Appendix I – Non-Ag Biosolids Management Report: +1 (780) 438-5522

7217 Roper Road NW Edmonton, Alberta T6B 3J4, Canada

E: info.Edmonton@element.com W: www.element.com

Report Transmission Cover Page

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

OLSTAD_EPCOR

BIOSOLIDS

Project Location: SE-07-54-21-W4

LSD: P.O.:

Proj. Acct. code:

Project Name:

Lot ID: 1773459

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071283

Report Type: Final Report

Contact	Company	Address
Accounts Payable	Tetra Tech EBA Inc	14940 - 123 Avenue
		Edmonton, AB T5V 1B4
		Phone: (780) 451-2121 Fax: (780) 454-5688
		Email: EBA.accounts.Payable@tetratech.com
Delivery	<u>Format</u>	<u>Deliverables</u>
Email - Merge	PDF	COC / Invoice
Edmonton Data	Tetra Tech EBA Inc	100, 140 Quarry Park Blvd SE
Management		Calgary, AB T2C 3G3
		Phone: (403) 203-3355 Fax:
		Email: eba.labdata@tetratech.com,ets.svc.eba_esdat@tetratech.com
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Email	Standard Crosstab With Tabs	Test Report
Email	Standard Reverse Crosstab With	Tabs Test Report
Email - Zip	EBA ESDAT Chemistry File	Test Report
Email - Zip	EBA ESDAT Sample File	Test Report
Email - Zip	Generic ESDAT Header	Test Report
Mark Fawcett	Tetra Tech EBA Inc	14940 - 123 Avenue
		Edmonton, AB T5V 1B4
		Phone: (780) 451-2130 Fax: (780) 454-5688

mark.fawcett@tetratech.com

Delivery	<u>Format</u>	<u>Deliverables</u>
Email	AB Tier 1 Custom Excel	Test Report
Email	PDF	COA / COC
Email	PDF	COC / Test Report
Email	Standard Crosstab With Tabs	Test Report
Email	Standard Reverse Crosstab With Tabs	Test Report
Email - Merge	PDF	COA / COC
Email - Zip	EBA ESDAT Chemistry File	Test Report
Email - Zip	EBA ESDAT Sample File	Test Report
Email - Zip	Generic ESDAT Header	Test Report

Notes To Clients:

• All wet soil samples received in a soil bag will be disposed 30 days after receipt on 2024-11-30.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

E: info.Edmonton@element.com
W: www.element.com

Analytical Report

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS Project Location:

LSD: SE-07-54-21-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773459

Control Number:

Date Received: Oct 31, 2024 Date Reported: Nov 6, 2024

Report Number: 3071283

Report Type: Final Report

Reference Number 1773459-1 1773459-2 1773459-3

Sample Date Sample Time Sample Location

Sample Description SE-07-

SE-07-01-0-15 SE-07-01-15-30

SE-07-02-0-15

		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	0.87	1.3	0.80	0.2
Metals Strong Acid D	igestion					
Antimony	Strong Acid Extractable	mg/kg	0.2	0.2	0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	5.4	5.7	5.0	0.2
Barium	Strong Acid Extractable	mg/kg	173	192	160	1
Beryllium	Strong Acid Extractable	mg/kg	0.6	0.7	0.6	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.31	0.28	0.27	0.01
Chromium	Strong Acid Extractable	mg/kg	15.3	17.0	13.5	0.5
Cobalt	Strong Acid Extractable	mg/kg	7.2	7.4	6.8	0.1
Copper	Strong Acid Extractable	mg/kg	19	18	15	1
Lead	Strong Acid Extractable	mg/kg	9.7	10.3	8.3	0.1
Mercury	Strong Acid Extractable	mg/kg	< 0.05	< 0.05	< 0.05	0.05
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Nickel	Strong Acid Extractable	mg/kg	18.5	20.0	17.3	0.5
Selenium	Strong Acid Extractable	mg/kg	0.7	0.9	0.4	0.3
Silver	Strong Acid Extractable	mg/kg	0.1	0.1	0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.13	0.15	0.11	0.05
Tin	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Uranium	Strong Acid Extractable	mg/kg	1.1	1.1	1.1	0.5
Vanadium	Strong Acid Extractable	mg/kg	27.4	30.1	22.9	0.1
Zinc	Strong Acid Extractable	mg/kg	72	78	55	1

E: info.Edmonton@element.com
W: www.element.com

Analytical Report

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS Project Location:

SE-07-54-21-W4

LSD: P.O.:

Proj. Acct. code:

Lot ID: 1773459

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071283

Report Type: Final Report

Reference Number 1773459-4 1773459-5 1773459-6

Sample Date Sample Time Sample Location

Sample Description SE-07-02-15-30

0-:1

N/ -4=:--

SE-07-03-0-15

SE-07-03-15-30

		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						-
Boron	Hot Water Soluble	mg/kg	0.94	0.93	1.1	0.2
Metals Strong Acid D	igestion					
Antimony	Strong Acid Extractable	mg/kg	<0.2	0.2	0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	5.2	5.7	5.8	0.2
Barium	Strong Acid Extractable	mg/kg	152	153	134	1
Beryllium	Strong Acid Extractable	mg/kg	0.5	0.6	0.5	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.17	0.24	0.17	0.01
Chromium	Strong Acid Extractable	mg/kg	13.5	13.9	14.3	0.5
Cobalt	Strong Acid Extractable	mg/kg	7.2	7.3	6.7	0.1
Copper	Strong Acid Extractable	mg/kg	13	18	13	1
Lead	Strong Acid Extractable	mg/kg	7.8	11.3	7.9	0.1
Mercury	Strong Acid Extractable	mg/kg	< 0.05	< 0.05	< 0.05	0.05
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Nickel	Strong Acid Extractable	mg/kg	17.1	17.5	17.6	0.5
Selenium	Strong Acid Extractable	mg/kg	0.4	0.5	0.5	0.3
Silver	Strong Acid Extractable	mg/kg	0.1	<0.1	<0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.12	0.13	0.11	0.05
Tin	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1.0
Uranium	Strong Acid Extractable	mg/kg	0.9	1.1	0.8	0.5
Vanadium	Strong Acid Extractable	mg/kg	23.4	24.6	20.7	0.1
Zinc	Strong Acid Extractable	mg/kg	54	60	52	1

Approved by:

Anthony Weumann, MSc

E: info.Edmonton@element.com
W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SE-07-54-21-W4

P.O.:

Proj. Acct. code:

Lot ID: **1773459**

Control Number:

Date Received: Oct 31, 2024
Date Reported: Nov 6, 2024
Report Number: 3071283

Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Hot Water So	luble											
Batch: 2516083	- Boron in ger	neral soil										
Control Sample	6646106	Oct 31, 2024	Boron	mg/kg	0.44						0.37 - 0.65	yes
Control Sample	6646107	Oct 31, 2024	Boron	mg/kg	<0.1						-0.2 - 0.2	yes
Control Sample	6646109	Oct 31, 2024	Boron	mg/kg	0.10						0.09 - 0.11	yes
Replicate	6646105	Oct 31, 2024	Boron	mg/kg	1.4			1.4		2.57	10 % or 0.1 Abs	yes
Metals Strong	g Acid Dige	estion										
Batch: 2516170	- Metals ICP (I	Hot Block) in soi	I									
Blank	6646378	Nov 01, 2024	Antimony	μg/L	<0.2	0.2	0.0				0.2	yes
Blank	6646378	Nov 01, 2024	Arsenic	μg/L	<0.2	0.2	0.0				0.2	yes
Blank	6646378	Nov 01, 2024	Barium	μg/L	<1	1	0.0				1	yes
Blank	6646378	Nov 01, 2024	Beryllium	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646378	Nov 01, 2024	Cadmium	μg/L	<0.01	0.01	0.0				0.01	yes
Blank	6646378	Nov 01, 2024	Chromium	μg/L	<0.5	0.5	0.0				0.5	yes
Blank	6646378	Nov 01, 2024	Cobalt	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646378	Nov 01, 2024	Copper	μg/L	<1	1	0.0				1	yes
Blank	6646378	Nov 01, 2024	Lead	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646378	Nov 01, 2024	Mercury	μg/L	< 0.05	0.05					0.05	yes
Blank	6646378	Nov 01, 2024	Molybdenum	μg/L	<1.0	1.0	0.0				1	yes
Blank	6646378	Nov 01, 2024	Nickel	μg/L	<0.5	0.5	0.0				0.5	yes
Blank	6646378	Nov 01, 2024	Selenium	μg/L	< 0.3	0.3	0.0				0.3	yes
Blank	6646378	Nov 01, 2024	Silver	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6646378	Nov 01, 2024	Thallium	μg/L	< 0.05	0.05					1	yes
Blank	6646378	Nov 01, 2024	Tin	μg/L	<1.0	1.0					0.5	yes
Blank	6646378	Nov 01, 2024	Uranium	μg/L	<0.5	0.5					0.5	yes
Blank	6646378	Nov 01, 2024	Vanadium	μg/L	<0.1	0.1					0.1	yes
Blank	6646378	Nov 01, 2024	Zinc	μg/L	<1	1					1	yes
Control Sample	6646377	Nov 01, 2024	Antimony	mg/kg	40.3						36.1 - 43.9	yes
Control Sample	6646377	Nov 01, 2024	Arsenic	mg/kg	39.5						36.3 - 43.9	yes

E: info.Edmonton@element.com W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SE-07-54-21-W4

Proj. Acct. code:

P.O.:

Lot ID: 1773459

Control Number:

Date Received: Oct 31, 2024 Date Reported: Nov 6, 2024

Report Number: 3071283
Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Metals Strong	g Acid Dige	stion - Conti	nued									
Control Sample	6646377	Nov 01, 2024	Barium	mg/kg	200						181 - 220	yes
Control Sample	6646377	Nov 01, 2024	Beryllium	mg/kg	20.0						17.4 - 22.2	yes
Control Sample	6646377	Nov 01, 2024	Cadmium	mg/kg	2.10						1.88 - 2.28	yes
Control Sample	6646377	Nov 01, 2024	Chromium	mg/kg	101						93.2 - 107	yes
Control Sample	6646377	Nov 01, 2024	Cobalt	mg/kg	19.5						18.3 - 21.5	yes
Control Sample	6646377	Nov 01, 2024	Copper	mg/kg	198						184 - 214	yes
Control Sample	6646377	Nov 01, 2024	Lead	mg/kg	19.8						18.3 - 21.3	yes
Control Sample	6646377	Nov 01, 2024	Mercury	mg/kg	3.02						2.64 - 3.36	yes
Control Sample	6646377	Nov 01, 2024	Molybdenum	mg/kg	202						182.8 - 223.6	yes
Control Sample	6646377	Nov 01, 2024	Nickel	mg/kg	99.9						92.4 - 106.2	yes
Control Sample	6646377	Nov 01, 2024	Selenium	mg/kg	39.6						35.2 - 44.2	yes
Control Sample	6646377	Nov 01, 2024	Silver	mg/kg	19.8						18 - 22	yes
Control Sample	6646377	Nov 01, 2024	Thallium	mg/kg	9.87						8.87 - 11.03	yes
Control Sample	6646377	Nov 01, 2024	Tin	mg/kg	206						183.1 - 223.3	yes
Control Sample	6646377	Nov 01, 2024	Uranium	mg/kg	100						86 - 116	yes
Control Sample	6646377	Nov 01, 2024	Vanadium	mg/kg	19.7						18 - 21.6	yes
Control Sample	6646377	Nov 01, 2024	Zinc	mg/kg	198						186 - 212	yes
Control Sample	6646379	Nov 01, 2024	Antimony	mg/kg	1.1						0.7 - 1.5	yes
Control Sample	6646379	Nov 01, 2024	Arsenic	mg/kg	11.7						9 - 15	yes
Control Sample	6646379	Nov 01, 2024	Barium	mg/kg	111						86 - 143	yes
Control Sample	6646379	Nov 01, 2024	Beryllium	mg/kg	1.6						1.1 - 1.7	yes
Control Sample	6646379	Nov 01, 2024	Cadmium	mg/kg	0.41						0.3 - 0.49	yes
Control Sample	6646379	Nov 01, 2024	Chromium	mg/kg	5.4						4.2 - 7	yes
Control Sample	6646379	Nov 01, 2024	Cobalt	mg/kg	1.8						1.5 - 2.3	yes
Control Sample	6646379	Nov 01, 2024	Copper	mg/kg	21						18 - 29	yes
Control Sample	6646379	Nov 01, 2024	Lead	mg/kg	76.0						56.7 - 94.5	yes
Control Sample	6646379	Nov 01, 2024	Mercury	mg/kg	< 0.05						0.04 - 0.06	yes
Control Sample	6646379	Nov 01, 2024	Molybdenum	mg/kg	3.8						2.9 - 4.7	yes
Control Sample	6646379	Nov 01, 2024	Nickel	mg/kg	5.9						4.7 - 7.8	yes
Control Sample	6646379	Nov 01, 2024	Selenium	mg/kg	<0.3						0 - 0.6	yes

E: info.Edmonton@element.com
W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SE-07-54-21-W4

P.O.:

Proj. Acct. code:

Lot ID: **1773459**

Control Number:

Date Received: Oct 31, 2024 Date Reported: Nov 6, 2024

Report Number: 3071283

Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Metals Strong	g Acid Dige	stion - Conti	nued									
Control Sample	6646379	Nov 01, 2024	Silver	mg/kg	0.2						0.1 - 0.2	yes
Control Sample	6646379	Nov 01, 2024	Thallium	mg/kg	0.28						0.21 - 0.36	yes
Control Sample	6646379	Nov 01, 2024	Tin	mg/kg	24.1						17 - 28.4	yes
Control Sample	6646379	Nov 01, 2024	Uranium	mg/kg	12.1						8.8 - 14.8	yes
Control Sample	6646379	Nov 01, 2024	Vanadium	mg/kg	3.0						2.3 - 3.8	yes
Control Sample	6646379	Nov 01, 2024	Zinc	mg/kg	135						108 - 177	yes
Replicate	6646376	Nov 01, 2024	Antimony	mg/kg	<0.2			<0.2		0.61	30 % or 0.44 Abs	yes
Replicate	6646376	Nov 01, 2024	Arsenic	mg/kg	5.0			5.1		3	30 % or 0.44 Abs	yes
Replicate	6646376	Nov 01, 2024	Barium	mg/kg	160			158		0.94	30 % or 2.2 Abs	yes
Replicate	6646376	Nov 01, 2024	Beryllium	mg/kg	0.6			0.6		6.5	30 % or 0.22 Abs	yes
Replicate	6646376	Nov 01, 2024	Cadmium	mg/kg	0.25			0.26		4.37	30 % or 0.022 Ab	s yes
Replicate	6646376	Nov 01, 2024	Chromium	mg/kg	13.7			14.2		3.27	30 % or 1.1 Abs	yes
Replicate	6646376	Nov 01, 2024	Cobalt	mg/kg	6.6			6.6		0.11	30 % or 0.22 Abs	yes
Replicate	6646376	Nov 01, 2024	Copper	mg/kg	17			16		8.9	30 % or 2.2 Abs	yes
Replicate	6646376	Nov 01, 2024	Lead	mg/kg	8.6			8.2		5.12	30 % or 0.22 Abs	yes
Replicate	6646376	Nov 01, 2024	Mercury	mg/kg	< 0.05			< 0.05		0.61	30 % or 0.05 Abs	yes
Replicate	6646376	Nov 01, 2024	Molybdenum	mg/kg	<1.0			<1.0		0.61	30 % or 2.2 Abs	yes
Replicate	6646376	Nov 01, 2024	Nickel	mg/kg	16.6			16.7		0.91	30 % or 1.1 Abs	yes
Replicate	6646376	Nov 01, 2024	Selenium	mg/kg	0.6			0.7		8.82	30 % or 0.66 Abs	yes
Replicate	6646376	Nov 01, 2024	Silver	mg/kg	0.2			0.2		3.98	30 % or 0.22 Abs	yes
Replicate	6646376	Nov 01, 2024	Thallium	mg/kg	0.10			0.10		3.62	30 % or 0.11 Abs	yes
Replicate	6646376	Nov 01, 2024	Tin	mg/kg	<1.0			<1.0		0.61	30 % or 2.2 Abs	yes
Replicate	6646376	Nov 01, 2024	Uranium	mg/kg	2.6			2.3		10.58	30 % or 1.1 Abs	yes
Replicate	6646376	Nov 01, 2024	Vanadium	mg/kg	23.5			23.9		2.06	30 % or 0.22 Abs	yes
Replicate	6646376	Nov 01, 2024	Zinc	mg/kg	62			63		2.73	30 % or 2.2 Abs	yes

SPK Value = Spike Value Ref Value = Reference Value %REC = Percent Recovery

RPD = Relative Percent Difference

Abs = Absolute Difference

E: info.Edmonton@element.com
W: www.element.com

Methodology and Notes

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02
Project Name: OLSTAD_EPCOR

OLSTAD_EPCOR BIOSOLIDS

Project Location:

LSD: SE-07-54-21-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773459

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024
Report Number: 3071283

Report Type: Final Report

Method of Analysis

Method of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Boron in general soil	BCELM	* Hot Water Soluble Boron, HWS-Boron	Oct 31, 2024	Element Edmonton - Roper Road
Metals ICP (Hot Block) in soil	EPA	 * Sample Preparation Procedure for Spectrochemical Determination of Total Recoverable Elements, October 1999, 200.2 	Nov 01, 2024	Element Edmonton - Roper Road
Metals ICP (Hot Block) in soil	US EPA	 Determination of Trace Elements in Waters and Wastes by ICP-MS, 200.8 	Nov 01, 2024	Element Edmonton - Roper Road

^{*} Reference Method Modified

References

BCELM B.C. Environmental Laboratory Manual

EPA Environmental Protection Agency Test Methods - US
US EPA US Environmental Protection Agency Test Methods

Appendix I – Non-Ag Biosolids Management Report: +1 (780) 438-5522

7217 Roper Road NW Edmonton, Alberta T6B 3J4, Canada E: info.Edmonton@element.com
W: www.element.com

Report Transmission Cover Page

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SW-07-54-21-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773460

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071284

Report Type: Final Report

Contact	Company	Address

Accounts Payable Tetra Tech EBA Inc 14940 - 123 Avenue

Edmonton, AB T5V 1B4

Phone: (780) 451-2121 Fax: (780) 454-5688

Email: EBA.accounts.Payable@tetratech.com

 Delivery
 Format
 Deliverables

 Email - Merge
 PDF
 COC / Invoice

Edmonton Data Tetra Tech EBA Inc 100, 140 Quarry Park Blvd SE

Management

Calgary, AB T2C 3G3

Phone: (403) 203-3355 Fax:

Email: eba.labdata@tetratech.com,ets.svc.eba_esdat@tetratech.com

Delivery **Format Deliverables** Email PDF COA / COC **Email PDF** COC / Test Report **Email** Standard Crosstab With Tabs Test Report **Email** Standard Reverse Crosstab With Tabs Test Report Email - Zip EBA ESDAT Chemistry File Test Report Email - Zip **EBA ESDAT Sample File** Test Report Email - Zip Generic ESDAT Header Test Report

Mark Fawcett Tetra Tech EBA Inc 14940 - 123 Avenue

Edmonton, AB T5V 1B4

Phone: (780) 451-2130 Fax: (780) 454-5688

Email: mark.fawcett@tetratech.com

Delivery **Format Deliverables** Email AB Tier 1 Custom Excel Test Report PDF COA / COC Email PDF Email COC / Test Report Email Standard Crosstab With Tabs Test Report Email Standard Reverse Crosstab With Tabs Test Report Email - Merge PDF COA / COC Email - Zip EBA ESDAT Chemistry File Test Report Email - Zip **EBA ESDAT Sample File** Test Report Email - Zip Generic ESDAT Header Test Report

Notes To Clients:

• All wet soil samples received in a soil bag will be disposed 30 days after receipt on 2024-11-30.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

E: info.Edmonton@element.com W: www.element.com

Analytical Report

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR **BIOSOLIDS**

Project Location:

LSD: SW-07-54-21-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773460

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071284

Report Type: Final Report

1773460-1 1773460-2 **Reference Number** Sample Date Oct 31, 2024 Oct 31, 2024 Sample Time NA NA

Sample Location Sample Description SW-07-02-0-15

SW-07-02-15-30

		Matrix	Soil	Soil		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	2.70	3.98		0.2
Metals Strong Acid Di	gestion					
Antimony	Strong Acid Extractable	mg/kg	0.3	0.2		0.2
Arsenic	Strong Acid Extractable	mg/kg	5.4	5.5		0.2
Barium	Strong Acid Extractable	mg/kg	139	130		1
Beryllium	Strong Acid Extractable	mg/kg	0.5	0.5		0.1
Cadmium	Strong Acid Extractable	mg/kg	0.29	0.27		0.01
Chromium	Strong Acid Extractable	mg/kg	15.5	14.9		0.5
Cobalt	Strong Acid Extractable	mg/kg	7.6	8.1		0.1
Copper	Strong Acid Extractable	mg/kg	20	17		1
Lead	Strong Acid Extractable	mg/kg	8.7	8.3		0.1
Mercury	Strong Acid Extractable	mg/kg	< 0.05	< 0.05		0.05
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0		1.0
Nickel	Strong Acid Extractable	mg/kg	20.1	20.4		0.5
Selenium	Strong Acid Extractable	mg/kg	0.6	0.6		0.3
Silver	Strong Acid Extractable	mg/kg	0.1	0.1		0.1
Thallium	Strong Acid Extractable	mg/kg	0.15	0.14		0.05
Tin	Strong Acid Extractable	mg/kg	<1.0	<1.0		1.0
Uranium	Strong Acid Extractable	mg/kg	2.4	2.6		0.5
Vanadium	Strong Acid Extractable	mg/kg	25.3	23.9		0.1
Zinc	Strong Acid Extractable	mg/kg	71	67		1

Approved by:

Anthony Neumann, MSc

nthony Weuman

General Manager

E: info.Edmonton@element.com
W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SW-07-54-21-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773460

Control Number:

Date Received: Oct 31, 2024
Date Reported: Nov 6, 2024
Report Number: 3071284

Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Hot Water So	luble											
Batch: 2516083 -	· Boron in ger	neral soil										
Control Sample	6646106	Oct 31, 2024	Boron	mg/kg	0.44						0.37 - 0.65	yes
Control Sample	6646107	Oct 31, 2024	Boron	mg/kg	<0.1						-0.2 - 0.2	yes
Control Sample	6646109	Oct 31, 2024	Boron	mg/kg	0.10						0.09 - 0.11	yes
Replicate	6646108	Oct 31, 2024	Boron	mg/kg	0.89			0.94		5.67	10 % or 0.1 Abs	yes
Metals Strong	g Acid Dige	estion										
Batch: 2517062 -	· Metals ICP (I	Hot Block) in soi	I									
Blank	6649031	Nov 04, 2024	Antimony	μg/L	<0.2	0.2	0.0				0.2	yes
Blank	6649031	Nov 04, 2024	Arsenic	μg/L	<0.2	0.2	0.0				0.2	yes
Blank	6649031	Nov 04, 2024	Barium	μg/L	<1	1	0.0				1	yes
Blank	6649031	Nov 04, 2024	Beryllium	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6649031	Nov 04, 2024	Cadmium	μg/L	<0.01	0.01	0.0				0.01	yes
Blank	6649031	Nov 04, 2024	Chromium	μg/L	<0.5	0.5	0.0				0.5	yes
Blank	6649031	Nov 04, 2024	Cobalt	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6649031	Nov 04, 2024	Copper	μg/L	<1	1	0.0				1	yes
Blank	6649031	Nov 04, 2024	Lead	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6649031	Nov 04, 2024	Mercury	μg/L	< 0.05	0.05					0.05	yes
Blank	6649031	Nov 04, 2024	Molybdenum	μg/L	<1.0	1.0	0.0				1	yes
Blank	6649031	Nov 04, 2024	Nickel	μg/L	<0.5	0.5	0.0				0.5	yes
Blank	6649031	Nov 04, 2024	Selenium	μg/L	<0.3	0.3	0.0				0.3	yes
Blank	6649031	Nov 04, 2024	Silver	μg/L	<0.1	0.1	0.0				0.1	yes
Blank	6649031	Nov 04, 2024	Thallium	μg/L	< 0.05	0.05					1	yes
Blank	6649031	Nov 04, 2024	Tin	μg/L	<1.0	1.0					0.5	yes
Blank	6649031	Nov 04, 2024	Uranium	μg/L	<0.5	0.5					0.5	yes
Blank	6649031	Nov 04, 2024	Vanadium	μg/L	<0.1	0.1					0.1	yes
Blank	6649031	Nov 04, 2024	Zinc	μg/L	<1	1					1	yes
Control Sample	6649030	Nov 04, 2024	Antimony	mg/kg	40.1						36.1 - 43.9	yes
Control Sample	6649030	Nov 04, 2024	Arsenic	mg/kg	40.3						36.3 - 43.9	yes

E: info.Edmonton@element.com
W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SW-07-54-21-W4

P.O.:

Proj. Acct. code:

Lot ID: 1773460

Control Number:

Date Received: Oct 31, 2024
Date Reported: Nov 6, 2024
Report Number: 3071284

Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Metals Strong	g Acid Dige	stion - Conti	nued									
Control Sample	6649030	Nov 04, 2024	Barium	mg/kg	201						181 - 220	yes
Control Sample	6649030	Nov 04, 2024	Beryllium	mg/kg	19.5						17.4 - 22.2	yes
Control Sample	6649030	Nov 04, 2024	Cadmium	mg/kg	2.08						1.88 - 2.28	yes
Control Sample	6649030	Nov 04, 2024	Chromium	mg/kg	102						93.2 - 107	yes
Control Sample	6649030	Nov 04, 2024	Cobalt	mg/kg	20.7						18.3 - 21.5	yes
Control Sample	6649030	Nov 04, 2024	Copper	mg/kg	193						184 - 214	yes
Control Sample	6649030	Nov 04, 2024	Lead	mg/kg	20.2						18.3 - 21.3	yes
Control Sample	6649030	Nov 04, 2024	Mercury	mg/kg	2.98						2.64 - 3.36	yes
Control Sample	6649030	Nov 04, 2024	Molybdenum	mg/kg	199						182.8 - 223.6	yes
Control Sample	6649030	Nov 04, 2024	Nickel	mg/kg	103						92.4 - 106.2	yes
Control Sample	6649030	Nov 04, 2024	Selenium	mg/kg	41.4						35.2 - 44.2	yes
Control Sample	6649030	Nov 04, 2024	Silver	mg/kg	20.9						18 - 22	yes
Control Sample	6649030	Nov 04, 2024	Thallium	mg/kg	10.3						8.87 - 11.03	yes
Control Sample	6649030	Nov 04, 2024	Tin	mg/kg	196						183.1 - 223.3	yes
Control Sample	6649030	Nov 04, 2024	Uranium	mg/kg	101						86 - 116	yes
Control Sample	6649030	Nov 04, 2024	Vanadium	mg/kg	20.1						18 - 21.6	yes
Control Sample	6649030	Nov 04, 2024	Zinc	mg/kg	199						186 - 212	yes
Control Sample	6649032	Nov 04, 2024	Antimony	mg/kg	1.2						0.7 - 1.5	yes
Control Sample	6649032	Nov 04, 2024	Arsenic	mg/kg	12.7						9 - 15	yes
Control Sample	6649032	Nov 04, 2024	Barium	mg/kg	116						86 - 143	yes
Control Sample	6649032	Nov 04, 2024	Cadmium	mg/kg	0.41						0.3 - 0.49	yes
Control Sample	6649032	Nov 04, 2024	Chromium	mg/kg	5.6						4.2 - 7	yes
Control Sample	6649032	Nov 04, 2024	Cobalt	mg/kg	2.1						1.5 - 2.3	yes
Control Sample	6649032	Nov 04, 2024	Copper	mg/kg	24						18 - 29	yes
Control Sample	6649032	Nov 04, 2024	Lead	mg/kg	78.7						56.7 - 94.5	yes
Control Sample	6649032	Nov 04, 2024	Mercury	mg/kg	< 0.05						0.04 - 0.06	yes
Control Sample	6649032	Nov 04, 2024	Molybdenum	mg/kg	4.2						2.9 - 4.7	yes
Control Sample	6649032	Nov 04, 2024	Nickel	mg/kg	6.6						4.7 - 7.8	yes
Control Sample	6649032	Nov 04, 2024	Selenium	mg/kg	0.4						0 - 0.6	yes
Control Sample	6649032	Nov 04, 2024	Silver	mg/kg	0.2						0.1 - 0.2	yes

E: info.Edmonton@element.com
W: www.element.com

Quality Control

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02

Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SW-07-54-21-W4

P.O.:

Proj. Acct. code:

Lot ID: **1773460**

Control Number:

Date Received: Oct 31, 2024
Date Reported: Nov 6, 2024
Report Number: 3071284

Report Type: Final Report

Sample Type	Sample ID	Analysis Date	Analyte	Units	Result	RDL	SPK Value	Ref Value	%REC	RPD	Limits	Passed
Metals Strong	g Acid Dige	stion - Conti	nued									
Control Sample	6649032	Nov 04, 2024	Thallium	mg/kg	0.31						0.21 - 0.36	yes
Control Sample	6649032	Nov 04, 2024	Tin	mg/kg	23.3						17 - 28.4	yes
Control Sample	6649032	Nov 04, 2024	Uranium	mg/kg	12.6						8.8 - 14.8	yes
Control Sample	6649032	Nov 04, 2024	Vanadium	mg/kg	3.1						2.3 - 3.8	yes
Control Sample	6649032	Nov 04, 2024	Zinc	mg/kg	155						108 - 177	yes
Replicate	6649034	Nov 04, 2024	Antimony	mg/kg	0.4			0.5		7.3	30 % or 0.44 Abs	yes
Replicate	6649034	Nov 04, 2024	Arsenic	mg/kg	8.3			8.3		1.16	30 % or 0.44 Abs	yes
Replicate	6649034	Nov 04, 2024	Barium	mg/kg	427			420		1.75	30 % or 2.2 Abs	yes
Replicate	6649034	Nov 04, 2024	Beryllium	mg/kg	1.0			1.1		8.19	30 % or 0.22 Abs	yes
Replicate	6649034	Nov 04, 2024	Cadmium	mg/kg	0.29			0.31		7.29	30 % or 0.022 Ab	s yes
Replicate	6649034	Nov 04, 2024	Chromium	mg/kg	19.8			20.8		4.98	30 % or 1.1 Abs	yes
Replicate	6649034	Nov 04, 2024	Cobalt	mg/kg	10.4			10.6		1.32	30 % or 0.22 Abs	yes
Replicate	6649034	Nov 04, 2024	Copper	mg/kg	23			24		2.75	30 % or 2.2 Abs	yes
Replicate	6649034	Nov 04, 2024	Lead	mg/kg	14.8			15.1		2.46	30 % or 0.22 Abs	yes
Replicate	6649034	Nov 04, 2024	Mercury	mg/kg	< 0.05			< 0.05		0.69	30 % or 0.05 Abs	yes
Replicate	6649034	Nov 04, 2024	Molybdenum	mg/kg	<1.0			<1.0		0.69	30 % or 2.2 Abs	yes
Replicate	6649034	Nov 04, 2024	Nickel	mg/kg	24.4			25.2		3.22	30 % or 1.1 Abs	yes
Replicate	6649034	Nov 04, 2024	Selenium	mg/kg	<0.3			< 0.3		0.69	30 % or 0.66 Abs	yes
Replicate	6649034	Nov 04, 2024	Silver	mg/kg	<0.1			0.1		4.62	30 % or 0.22 Abs	yes
Replicate	6649034	Nov 04, 2024	Thallium	mg/kg	0.22			0.23		3.78	30 % or 0.11 Abs	yes
Replicate	6649034	Nov 04, 2024	Tin	mg/kg	<1.0			<1.0		0.69	30 % or 2.2 Abs	yes
Replicate	6649034	Nov 04, 2024	Uranium	mg/kg	0.9			1.0		3.17	30 % or 1.1 Abs	yes
Replicate	6649034	Nov 04, 2024	Vanadium	mg/kg	27.6			28.0		1.23	30 % or 0.22 Abs	yes
Replicate	6649034	Nov 04, 2024	Zinc	mg/kg	87			88		2	30 % or 2.2 Abs	yes

SPK Value = Spike Value Ref Value = Reference Value %REC = Percent Recovery

RPD = Relative Percent Difference

Abs = Absolute Difference

E: info.Edmonton@element.com W: www.element.com

Methodology and Notes

Bill To: Tetra Tech EBA Inc

14940 - 123 Avenue

Edmonton, AB, Canada

T5V 1B4

Attn: Accounts Payable

Sampled By: ALEX COPAN

Company: TETRA TECH CANADA INC.

Project ID: ENW.BIOS03089-02 Project Name: OLSTAD_EPCOR

BIOSOLIDS

Project Location:

LSD: SW-07-54-21-W4 P.O.:

Proj. Acct. code:

Lot ID: 1773460

Control Number:

Date Received: Oct 31, 2024

Date Reported: Nov 6, 2024 Report Number: 3071284 Report Type: Final Report

Method of	Anal	lysis
-----------	------	-------

momou or rinaryoro				
Method Name	Reference	Method	Date Analysis Started	Location
Boron in general soil	BCELM	* Hot Water Soluble Boron, HWS-Boron	Oct 31, 2024	Element Edmonton - Roper Road
Metals ICP (Hot Block) in soil	EPA	 * Sample Preparation Procedure for Spectrochemical Determination of Total Recoverable Elements, October 1999, 200.2 	Nov 04, 2024	Element Edmonton - Roper Road
Metals ICP (Hot Block) in soil	US EPA	 Determination of Trace Elements in Waters and Wastes by ICP-MS, 200.8 	Nov 04, 2024	Element Edmonton - Roper Road

^{*} Reference Method Modified

References

BCELM B.C. Environmental Laboratory Manual

EPA Environmental Protection Agency Test Methods - US **US EPA** US Environmental Protection Agency Test Methods

EPCOR Water Services Edmonton, Alberta

2024 Annual Wastewater Collection System Report

Submitted to:

The Province of Alberta
Alberta Environment and Protected Areas (AEPA)

As per requirements of:
Approval to Operate No. 639-03-07

February 2025

EPCOR Water Services Edmonton, Alberta

2024 Annual Wastewater Collection System Report

SUBMITTED TO:

The Province of Alberta

Alberta Environment and Protected Areas (AEPA)

As per requirements of:

APPROVAL NO. 639-03-07

February - 2025

TABLE OF CONTENTS

	Approval No. 639-03-07 Requirement	Page
2024 Overview	N/A	3
Table 1: 2024 Summary of Completed Projects and Planned Major Rehabilitation Projects	4.4.6 – Wastewater Collection System Operations Plan	5
Interconnection Control Strategy	4.4.6 (c) – Wastewater Collection System Operations Plan, Interconnection Identification and Control Strategy	8
Storm and CSO Volumes and Loadings	4.4.6 (g) – Wastewater Collection System Operations Plan –River Load Calculation Protocol	16
	6.3.3 (b) (v)– Annual Wastewater System Report	
Table 2: 2024 Annual Discharge Volumes	4.4.6 (g) – Wastewater Collection System Operations Plan –River Load Calculation Protocol	21
	6.3.3 (b) (v) – CSO Annual Discharge Volumes	
Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituents for 2024	4.4.6 (g) – Wastewater Collection System Operations Plan –River Load Calculation Protocol	22
Table 4: Constituent Loads for 2024	4.4.6 (g) – Wastewater Collection System Operations Plan –River Load Calculation Protocol	26
Table 5: 2024 Rat Creek CSO Concentration Statistics	6.3.3 (b)(i,ii) – CSO Monthly Mean Concentrations Release Events per	29
	Table 6-1	
Table 6: 2024 List of Certified Collection	4.5.2 - Certified Operator Requirements	30
System Operators	6.3.3 (b)(iv) – Wastewater Collection Supervising Operator	
Table 7: 2024 Annual Product Usage at Pump Stations	4.4.6 (d) – Wastewater Collection System Chemical Usage Protocol	34
	6.3.3 (b)(iii) – summary of chemical added	
Table 8: 2024 Usage of Reward® Herbicide	4.4.6 (d) – Wastewater Collection System Chemical Usage Protocol	34
	6.3.3 (b)(iii) – summary of chemical added	

2024 Annual Wastewater Collection System Report

Table 9: 2024 Usage of Bright Dyes®	4.4.6 (d) – Wastewater Collection System Chemical Usage Protocol 6.3.3 (b)(iii) – summary of chemical added	35
Table 10: 2024 Usage of De-Icing Product	4.4.6 (d) – Wastewater Collection System Chemical Usage Protocol	39
	6.3.3 (b)(iii) – summary of chemical added	
Table 11: 2024 List of Operational Issues	6.3.3 (b)(vii, viii) – List of Operation Problems and Incidents Per 2.1.1.	42

2024 Overview

EPCOR Water Services (EWS) provides wastewater collection (WWC) and stormwater conveyance services to City of Edmonton (the 'City') residents through the planning, construction, operating and maintenance of the pipes, tunnels, pump stations, and stormwater management facilities that make up the wastewater collection network. In 2025, EWS is realigning some of the previously established accountabilities to a functional organizational design by integrating teams to improve the experience for our employees and customers. Construction, operation and maintenance of the wastewater collection linear assets (including pipes, pump stations, lift stations, stormwater management facilities) will be supported by four functional groups:

- Linear Asset Operations: responsible for the central management and operation of the wastewater collection systems.
- Linear Asset Maintenance: responsible for maintenance and inspection activities for wastewater collection linear assets, from lift stations to stormwater facilities.
- Linear Asset Construction: execute construction activities for linear assets, including sewer repairs.
- Linear Asset Services: provide developer services, public and private inspections.

The organizational changes will be reflected in the 2025 reporting. For the 2024 report, the organizational naming reflects the previous organization structure as detailed below:

Project Management and Engineering are responsible for projects that are in the preliminary design or detailed design phase. They manage in-house engineering design, cost estimation, and drafting. Projects include new sewer infrastructure projects like tunnels, pipes, manholes, wetlands, and the coordination of sewer rehabilitation work.

WWC Construction is responsible for the in-house construction and emergency repairs on the collection systems. The rehabilitation construction team uses a wide variety of construction methods to rehabilitate the system and build for growth using open-cut and trenchless techniques. The customer construction group completes service connections, renews existing drainage assets, and completes emergency and high priority repairs.

Infrastructure like sewers and structures in the wastewater collection system require ongoing maintenance. WWC Operations — which includes pipeline maintenance, flow-control facilities, monitoring and compliance, and operations engineering — inspect and monitor the wastewater collection systems to ensure service to customers is maintained and to optimize the short-term maintenance required. They also reduce the possibility of customer sewer back-ups caused by service connection blockages and minimize disruptions to the public.

Operations are supported by a number of other groups throughout EPCOR such as Public and Governmental Affairs, Supply Chain Management, Fleet and Equipment, Facilities and Finance.

Collection and conveyance of wastewater and stormwater is carried out through the wastewater collection system which consists of sanitary and stormwater collection infrastructure.

The sanitary collection infrastructure includes more than 2,800 km of sanitary sewer, over 800 km of combined sanitary and storm sewer that connect all customers to sanitary trunk sewers. Sanitary trunks then deliver wastewater directly to the Gold Bar Wastewater Treatment Plant (WWTP).

A portion of the conveyance of wastewater is covered under a Wastewater Exchange Agreement between EPCOR and Arrow Utilities (formerly Alberta Capital Region Wastewater Commission). The Arrow Utilities Plant takes wastewater from Clareview in northeast Edmonton and from the Clover Bar Industrial Area. In exchange, the sanitary collection system conveys wastewater from the south members (City and County of Leduc, and the Town of Beaumont) for treatment at the Gold Bar WWTP.

The stormwater collection infrastructure includes over 3,300 km of storm sewer, 62,000 catch basins, and 12,800 catch basin manholes. This stormwater collection infrastructure is connected to stormwater trunk sewers. Storm trunks then discharge stormwater to natural watercourses, i.e. creeks and the North Saskatchewan River, through one of 258 outfalls. Strategically placed within the stormwater collection system are 310 stormwater management facilities which provide flood prevention, peak-flow attenuation, and treatment through stormwater retention.

Between the sanitary/combined sewer system and stormwater system there are 95 pumpstations which ensure proper servicing to EPCOR's customers in Edmonton.

EWS is fully committed to the protection of the environment and the health and safety of its employees, customers and neighbors. Health and safety and the environment (HSE), including public health safety, is one of the top priorities of EPCOR. In order to continually improve our HSE performance, EWS operates with an integrated HSE management system that operates according to the ISO14001:2015 standard for Environment Management Systems and the ISO 45001:2014 standard for Safety Management Systems. Successful re-registration of the Integrated Management System was maintained following a re-registration audit in 2024.

As required by Approval #639-03-07, EWS is submitting the 2024 Annual Wastewater Collection System Report.

This Annual Wastewater Collection System Report submission includes: 2024 EWS Wastewater Collection system Capital Program summary, Interconnection Control Strategy Annual Report, Environmental Monitoring results, Chemical usage, and Collection System Operational details.

TABLE 1: Summary of 2024 Completed Projects and Planned Major Rehabilitation Projects

Project / Program	Completion
Drainage System Expansion	
2022 Safety Program	Feb-24
CB Relocation on YHT 107 St to Fort Rd	Oct-24
SESS SA10A CP-002993-01	Oct-24
Freeway Relocates (YHT)	Jul-25
2024-2025 SWMF Safety Enhancements	Aug-25
2025-2026 SWMF Safety Enhancements	May-27
Environmental Quality Enhancement	
Pump Station Optimization	Mar-24
2023 Access Manholes	Mar-24
Sanitary CB Lead Removal	Jul-24
2022 Drop Structure Mod	Jul-24
2022-2023 Low Impact Development - Commercial	Jul-24
2023 Drop Structure Modifications	Jul-24
2024 Environmental Enhancements	Oct-24
2021 Pump Station Enhancements	May-25
2023 Pump Station Enhancements	May-25
2024 Drop Structure Modifications	May-25
2024 Environmental Monitoring	Jun-25
2024 Access Manholes	Jun-25
Duggan Tunnel Replacement	Aug-25
2024 Commercial Low Impact Development	Aug-25
2025 Commercial Low Impact Development	Sep-25
2025-2027 Access Manholes	Dec-27
2025-2027 Pump Station Enhancements	Dec-27
2025-2027 Environmental Monitoring	Dec-27
2025-2027 Environmental Enhancements	Dec-27
Flood Mitigation	
2022-2023 Proactive MH Seal	Feb-24
2022-2023 Proactive Pipe Reline	Apr-24
Gateway BLVD Geyser	Jan-24
2023 Proactive Pipe Relining - Sanitary & Combined	Aug-24
2024 Overland Drainage	Sep-24
2024 Proactive Manhole Sealing	Dec-24

2024 Proactive Pipe Relining-Sanitary and Combined	Mar-25
2021 Outfalls and Auto Gates	Jul-25
2023 Overland Drainage	Jul-25
Parkdale Dry Pond	Aug-25
King Edward Park Odour Control Facility Reuse	Aug-25
Replace PW168 WIth A Gravity Sewer	Sep-25
Ottewell Dry Pond	Sep-27
Cloverdale Dry Pond	Jun-26
Kenilworth Dry Pond	Sep-26
Forest Heights Dry Pond	Feb-27
Kensington Dry Pond & Sewer Separation	May-27
2023 Rossdale SWMF & Storm Improvements	May-27
2025-2027 Proactive Pipe Relining-Sanitary and Com	Dec-27
2025-2027 Proactive Manhole Sealing	Dec-27
Lauderdale Dry Pond	Dec-27
Newton Dry Pond	Jun-28
Alberta Ave SWMF	Dec-28
Drainage System Rehabilitation	
2023 Local Sewer Rehab	Apr-24
Huff Bremnew ESt NBHD	May-24
Prince Rupert NBHD Renewal	May-24
2022 2023 Arteria and Collector Renewal	Jun-24
2022 Storm Trunk 85547 Rehabilitation	Jun-24
2022 Drill Drop Manholes Rehab	Jul-24
New Buena Vista PS OP-002062-01	Jul-24
2019-2020 Outfall Rehab	Sep-24
2023 Relining Local Renewal	Sep-24
Trestle #5	Oct-24
2024 Open Cut Local Renewal	Nov-24
Capital Line LRT	Nov-24
North Griesbach Pump Station	Nov-24
2024 Local Sewer Rehab	Dec-24
2024 Service Relining	Dec-24
Clover Bar Area High Priority Manhole/Pipe Replacement Project	Dec-24
Void Rehabilitation Near 122 Street & 51 Avenue	Jan-25
2024 Arterial and Collector Renewal Coordination	Mar-25
2024 Relining Local Renewal	Mar-25
Whitemud Dr &106 St	Mar-25

2024 Annual Wastewater Collection System Report

151S/99A SanTrunk OP-001940-01	Apr-25
2021 Drill Drop Manholes Rehab	Apr-25
86 Street & 127 Avenue Subsidence Emergency	Apr-25
2021 Outfall Rehab	Jun-25
2022-2024 Small Trunk Rehabilitation	Jun-25
2024 Drill Drop Manholes Rehabilitation	Jun-25
Glastonbury Sewer Subsidence Rehabilitation	Jun-25
2021 Pump Station Rehab	Jul-25
2022 Outfall Rehabilitation	Jul-25
2023 Pump Station Rehabilitation Rundle Heights	Jul-25
2023 San 11 Double Barrel Rehabilitation 3	Jul-25
Terwilleger Sanitary Trunk 29 Rehabilitation	Aug-25
2023 Drill Drop Manhole Rehabilitation	Sep-25
2023 Pump Station Replacement Eastgate	Sep-25
MacKinnon Ravine Trunk Rehabilitation	Sep-25
Walterdale PS 171	Oct-25
151 South Large Trunk Rehab	Dec-25
2025 Outfall Rehabilitation	Dec-25
Oxford 1 SWMF Retaining Walls and Landscape Rehab	Dec-25
2025-2026 Small Trunk Rehabilitation	May-26
Small Trunk Program - NE Syphon Rehabilitation	Jun-26
2023 Outfall Rehabilitation	Jul-26
Mill Creek CombTrunk Rehab	Aug-26
2023 Pump Station Rehabilitation Quesnell	Oct-26
Mill Creek High Priority Sewer Rehab	Oct-26
Beaumaris Sanitary Sewer Installation	Oct-27
Combined Trunk 94 Replacement	Oct-27
West Valley Line LRT Sewer Relocation	Oct-27
2025-2027 Arterial and Collector Renewal Coordination	Dec-27
2025-2027 Drill Drop Manholes Rehabilitation	Dec-27
2025-2027 Large Trunk Rehabilitation	Dec-27
2025-2027 Local Sewer Rehabilitation	Dec-27
2025 Pump Station Rehabilitation	Feb-28

Interconnection Control Strategy

SUMMARY

In response to a requirement in the 1995 Approval to Operate (No. 95-MUN-117), EWS prepared an Interconnection Control Strategy. Through this Strategy, EPCOR embarked on its mitigation and monitoring program in the context of "perpetual monitoring and assessment" (Figure 1).

An interconnection is designed to allow sanitary or combined sewage to overflow into the storm system, in order to relieve the sewer system under high flow conditions. Since 1998, a program has been in place to minimize the contamination of stormwater with sanitary sewage by monitoring, assessing and eliminating or mitigating all interconnections between the two systems. This will reduce the total loading of contaminants to the North Saskatchewan River.

Under the current Approval (639-03-07), issued in 2021, EPCOR intends to continue with the existing processes and reporting through the Wastewater System Operations Plan. This report presents summaries of: status and mitigation activities for known and newly discovered interconnections (I/Cs); results of the 2024 monitoring program; and status of the Interconnection Rectification Assessment project.

Interconnection Status

During 2024, 7 interconnections were discovered, and none were closed. The I/C count for December 31, 2024 stands at 124 open I/Cs and 289 corrected sites (total 413).

Interconnection Monitoring

As of December 31, 2024, 113 of the 124 open I/Cs had monitoring devices. Three dry weather overflows (DWO) were discovered in 2024.

Interconnection Rectification Assessment Project

Two consultants were hired in 2002 and 2003 to carry out the rectification assessment of about 90 and 40 sites, respectively. Their work focused mainly on active I/Cs and I/Cs with DWOs. Previous studies and monitoring data were utilized to quantify I/Cs activity, support sewer system assessment, and provide conceptual and preliminary design for remedial works. These assessment studies were completed in 2004 and EPCOR has been following up with the recommended mitigation work since. New focused, detailed assessment projects are ongoing as rectification projects are defined.

1.0 INTRODUCTION

An Interconnection Control Strategy was prepared by EPCOR in response to a requirement by Alberta Environment, as part of the 1995 Approval. This program to minimize the contamination of stormwater by sanitary sewage, has been in effect since 1998.

A key commitment of the Interconnection Control Strategy is perpetual monitoring and assessment for all unmitigated interconnections (see Figure 1). This consists of identification, maintenance of data, evaluation, monitoring, correction, elimination and mitigation.

The focus of interconnection monitoring activities is to collect information on the frequency and duration of discharges from all interconnection (I/C) sites. The evaluation of the data for all sites is the core component of the assessment. All sites are to be evaluated annually for further action. More detailed monitoring will be conducted at highly active sites. Corrective measures will be

taken at inactive sites or active sites where sufficient data has been collected and analyzed indicating that they can be safely closed. Monitoring information will be used as the basis for decisions in terms of remedial activity.

As part of the current Approval (639-03-07) issued in 2021, the *Interconnection Identification and Control Strategy* is continuing to be a component of the *Wastewater Collection System Operations Plan.* The *Wastewater Collection System Monitoring Protocol* includes the collection of overflow data from open (active) interconnection sites. This Protocol was submitted to Alberta Environment in 2007 and has been maintained since.

Through the *Wastewater Collection System Operations Plan*, EPCOR has committed to continue with the Interconnection Control Strategy and annual reporting of the I/C status by February 28 of each year. The intent of the annual report is to document changes and status of the I/Cs, including any corrections or closures, and to provide an updated I/C database. The following documents the I/C status for 2024.

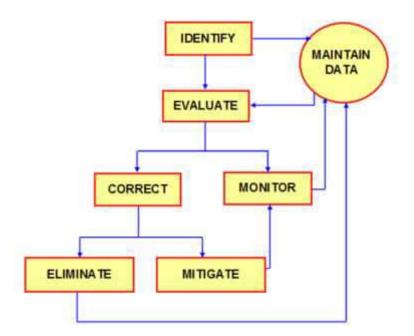
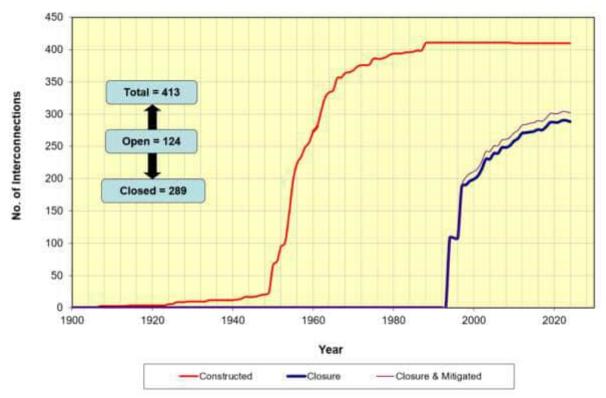



Figure 1 Interconnection Control Strategy Perpetual Monitoring and Assessment

2.0 MITIGATION MEASURES

On December 31, 2024 there were a total of 413 I/Cs. This consisted of 124 open I/Cs and 289 corrected (closed) I/Cs. In 2024, 2 previously closed interconnections were found open and 7 new interconnections were discovered. No I/Cs were closed.

The enclosed plan "2024 Status and DWO Locations" shows the locations of all of the open I/Cs in the city. A database of I/C sites is also included. Figure 2 shows the cumulative number of I/Cs over time.

Figure 2 Cumulative Number of Interconnections

2.1 CONSTRUCTION

The mitigation measures undertaken in 2024 include:

 Completion of the Queen Mary Park, Oliver, and Ritchie Neighborhood interconnection project, which investigated the potential closure of I/Cs in the area. Work started on the I/Cs that were recommended to be closed.

3.0 MONITORING AND ASSESSMENT RESULTS

In 2024, a capital project was created to purchase and install new loggers. Prior to 2024, a third-party contractor was responsible for data acquisition. This became EPCOR's responsibility when the new loggers were installed.

Benefits to upgrading the loggers include;

- Increased battery life which reduces the number of field visits
- Data goes directly into the EPCOR system which allows for improved control and monitoring of the data acquisition process
- Logger status (such as battery and signal strength) is monitored remotely and regularly checked, which allows issues to be identified earlier and improves asset management
- The site visits that were completed as a result of this effort helped improve knowledge regarding the I/Cs and expand the information in the database
- The same capital project was also used to purchase sensors for the newly discovered I/Cs as well as replacement of malfunctioning sensors.

A new protocol was developed and implemented where an automated message is sent when an I/C records wet (indicating a potential overflow). This triggers a manual review process which includes checking rainfall as well as previous work requests and history of false alarms. Through the investigation process, all information is recorded in a database, which helps to build a well-defined history for each location. The rectification studies in the past can also provide crucial insight and information regarding an I/C location. Both of these data sources can be used to inform future management and operational decisions.

This additional information as well as the logger data provides a clear picture on the status of the I/C station that can be used to quickly diagnose and fix issues.

3.1 DRY WEATHER OVERFLOWS (DWOS)

In 2024, 63 investigations of possibly overflowing sites were made with 3 Dry Weather Overflows discovered. These were reported to AEPA upon discovery.

3.2 INTERCONNECTION SITE ACTIVITY CHARACTERISTICS SUMMARY

As shown in Table 1 below, about 3% of the sites were found to have dry weather overflows each year during monitoring from 1997 to 2021, with an average of 1% over the past 5 years. These events are critical to the environment. Although only 1% of the sites experience dry weather overflow in a given year, overflows occur at different sites each year.

Table A: Interconnection Site Activity Characteristics Summary

Year	Known I/C Sites	I/C Sites Monitored	Dry Weather Overflow	Rainfall Correlated	Inactive Sites	Unverified Overflows
1997	186	182	N/A	65	109	8
1998	188	179	3	72	64	43
1999	188	176	6	48	92	29
2000	186	173	6	36	76	56
2001	185	174	7	37	75	55
2002	179	161	6	29	110	16
2003	167	153	5	34	102	12
2004	155	139	5	64	51	19
2005	150	131	9	16	88	18
2006	151	131	5	39	70	17
2007	142	126	2	21	87	16
2008	142	126	3	25	75	24
2009	141	127	2	10	81	28
2010	133	118	3	17	72	26
2011	129	118	3			
2012	121	113	4			
2013	121	113	1			
2014	124	113	2			
2015	123	112	0			
2016	120	112	0			
2017	121	68	4			
2018	116	93	4			
2019	117	103	3			
2020	117	110	2			
2021	117	110	1			
2022	115	106	0			
2023	115	106	1			
2024	124	113	3			
Average	142	128	3	37	82	26
Proportion	of Monitored Sites	3	2.6%	29%	64%	20%

4.0 RECTIFICATION ASSESSMENT PROJECT SUMMARY

Two consultants were hired in 2002 and 2003 to carry out the second phase of a large-scale Interconnection Rectification Assessment project. The first project included about 90 I/C sites and the second included about 40 sites. Their work was focused mainly on active and DWO I/Cs. This work identified many I/Cs that could be closed if funds are available.

Previous studies and monitoring data collected between 1998 and 2003 were utilized to quantify interconnection activity, support sewer system assessment, and provide conceptual and preliminary design for remedial works. Major work requirements for this rectification assessment included:

- Perform sewer system data collection and field surveys
- Carry out sewer condition and hydraulic assessment
- Evaluate various remedial measures
- Develop conceptual and preliminary design plans
- Provide Cost estimates

A computer model called MOUSE (Model For Urban Sewers) developed by DHI (Danish Hydraulics Institute) was employed in these studies to simulate the existing system and recommend remedial measures under various wet weather flow conditions. Simulation results such as hydraulic grade line and by-pass volume were summarized and evaluated to ensure that an improved level of control can be achieved, and that proposed improvements would not cause other system problems.

These two assessment projects were completed in 2004 and we have been following up with construction of the recommended mitigation works since that time. The assessments identified a long list of construction works that will absorb the funding for the next several years. New assessment projects will commence once this construction is largely complete.

In 2018, a review of select neighborhoods was done in addition to the rectification detailed design works. Further recommendations for interconnection closure work has been developed beyond the conceptual design phase. EPCOR will evaluate these recommendations alongside infrastructure plans of other programs such as neighborhood rehab and the Stormwater Integrated Resource Plan (SIRP).

Interconnection Database December 31, 2024

				T	1	T	1		1				1	T	1		1		Ш	
			ADAS-								_	STRM_			COR-		OF_	OF_		
IC Site#	Plan IC MH#		RAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM	IC_	AGE /	AGE	AGE	ICTYPE	Delete date	RECTED	OF_LOC1	LOC2	DIA	NHOOD	COUNT
ACTIVE INTER	CONNECTIONS																			
12				046	T3	146	SUMMIT DR	30		71	30	49	HIGH PIPE		FALSE	RIVER	LEFT		Crestwood	1
14				803		W142	S. SUMMIT DR	30		61	55	61	OVERFLOW		FALSE	RIVER	LEFT	1650	Glenora	2
15	97-174 2			880		136	S102	138		43	43		OVERFLOW		FALSE	CREEK	LEFT	375	Glenora	3
16				801		ST GEORGE		122		55	29	55	LOW PIPE		FALSE	RIVER	LEFT	200	Glenora	4
17				802		E135	SVICTORIA DR			43					FALSE					5
18				813	435	134	ST GEORGE	124		64	29		HIGH PIPE		FALSE	CREEK	LEFT		Glenora	6
19				812	404	133	ST GEORGE	126		55	55		OVERFLOW		FALSE	CREEK	LEFT	200	Glenora	7
20				826		132	TWEEDSMUIR			49	29	49	OVERFLOW/WI	IR	FALSE	CREEK	LEFT	200	Glenora	8
21				839		E132	S103	273		54					FALSE				Glenora	9
25				820	445	W123	102	46		50	52		LOW PIPE		FALSE	RIVER	LEFT		Oliver	10
26				827	456	W122	102	46		50	9		LOW PIPE		FALSE	RIVER	LEFT		Oliver	11
27				832	506	W121	102	46		50	78		LOW PIPE		FALSE	RIVER	LEFT		Oliver	12
28				805	402	W120	102	46		50	90		LOW PIPE		FALSE	RIVER	LEFT		Oliver	13
29				816	411	W119	102	46		50	13	50	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	14
30	97-123	55525 34	13201	830	416	W118	102	46		50	12	50	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	15
31				843	425	W117	102	46		50	11		LOW PIPE		FALSE	RIVER	LEFT		Oliver	16
32				855	431	W116	102	46		50	11	50	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	17
33				884	448	W114	102	46		50	8		LOW PIPE		FALSE	RIVER	LEFT		Oliver	18
34			13605	805	805	W113	102	46		50	8	50	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	19
35			13605	817	430	W112	102	46		50	8	50	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	20
36	97-115 20	65684 34	13605	821	412	112	102	46		50	30	50	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	21
37	97-114 20	65754 34	13605	833	414	111	102	46		50	46	50	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	22
38	97-113 20	65728 34	13605	801	405	114	N101	46		50	7	50	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	23
39	97-112 24	45736 34	13605	803	406	114	S101	46		50	7	50	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	24
41	97-142 24	45620 31	13625	871		W113	99	46		50	10	50	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	25
46	97-141 24	45582 31	13625	839	410	113	S99	46		50	13	50	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	26
48	97-145 2	55558 34	13201	869	440	116	S101	46		54	7	54	LOW PIPE		FALSE	RIVER	LEFT	1275	Oliver	27
49	97-122 2	57004 34	13606	803		114	104	46		50	27	50	LOW PIPE/WEII	₹	FALSE	RIVER	LEFT	1275	Oliver	28
50	97-109 2	56913 34	13210	835	404	W116	106	54		64	64	64	LOW PIPE		FALSE	RIVER	LEFT	3000	Queen Mary Park	29
53	96-090 20	66055 34	13625			110 ST	N111 AVE		54	55					FALSE				Prince Rupert	30
60	97-129 2	72723 37	73220		401	W120	129	31		55	55	55	OVERFLOW		FALSE	RIVER	LEFT	2400	Calder	31
75	97-099 20	63753 34	13622		416	W87	114	56		56	56	13	OVERFLOW		FALSE				Parkdale	32
76	97-098 20	63758 34	13622		422	W86	114	56		56	56	13	OVERFLOW		FALSE				Parkdale	33
78	97-096 20	63708 34	13621		401	W83	114	56		56	56	13	OVERFLOW		FALSE				Parkdale	34
79			13621		406	W82	114	56		56	56		OVERFLOW		FALSE				Parkdale	35
80	97-080 20		13621		423	W80	113	56		56	56		OVERFLOW		FALSE				Cromdale	36
81			13621		430	W79	113	56		56	56		OVERFLOW		FALSE				Cromdale	37
83			13621		422	W80	114	56		56	56		OVERFLOW		FALSE	1			Edmonton Northland	

IC Database Page 1

		1	1	<u> </u>	1	1	1			1 1		1			1		1		
			CADAS-								AN_	STRM_		COR-		OF_	OF_		
IC Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ N	UM	IC_AGE AG	3E	AGE ICTYPE	Delete date	RECTED	OF_LOC1	LOC2	DIA	NHOOD	COUNT
94	96-008	227272		803	412	110	57	22		52	46			FALSE	RIVER	RIGHT		Pleasantview	39
95	96-010	227234	283615		420	111	S61	22		54	54			FALSE	RIVER	RIGHT		Pleasantview	40
106		224867	283221		445	112	N76	22		54	47			FALSE	RIVER	RIGHT	1500	Parkallen	41
107	96-007	224927		813	448	112	N75	22		86	48			FALSE	RIVER	RIGHT	1500	McKernan	42
110	97-021	242851	313212		471	SASK DR	89	23D		53	48		IR	FALSE	RIVER	RIGHT	375	Windsor Park	43
111	97-022	242711		800	443	W120	89	23D		53	49			FALSE	RIVER	RIGHT		Windsor Park	44
113	97-029	228112	283625		429	109	73	22		54	14	54 OVERFLOW		FALSE	RIVER	RIGHT	1500	McKernan	45
114	96-018	227757	283616	842		109	67	22		51	46	51 OVERFLOW		FALSE	RIVER	RIGHT	1500	Parkallen	46
116	96-009	227604	283615		406	109	65	22		54	49	54 OVERFLOW		FALSE	RIVER	RIGHT	1500	Parkallen	47
119	96-013	227636	283615		431	109	62	22		54	49	54 OVERFLOW		FALSE	RIVER	RIGHT	1500	Parkallen	48
120	97-045	227702	283615	842		109	61	22		54	54	54 DUAL		FALSE	RIVER	RIGHT	1500	Pleasantview	49
134	97-195	229993	313601	861	473	89	S77	44		55	49	55 LOW PIPE		FALSE	RIVER	RIGHT	3800	King Edward Park	50
135	96-059	246571	313601	859	471	91	S77	44		55	28	55 LOW PIPE/WE	IR	FALSE	RIVER	RIGHT	3800	King Edward Park	51
139	96-053	229990	313601	828	435	91	S80	44		55	28	55 LOW PIPE/WE	IR	FALSE	RIVER	RIGHT	3800	King Edward Park	52
143	96-064	243161	313610	859		93	S83	116		55	39	55 OVERFLOW/V	/EIR	FALSE	CREEK	RIGHT	750	Bonnie Doon	53
147	96-066	243180	313610	867	437	87	S83	116		50	50	50 LOW PIPE/WE	IR	FALSE	CREEK	RIGHT	750	Bonnie Doon	54
149	96-051	243858	313601	802	403	89	82	254		52	50	52 LOW PIPE		FALSE	CREEK	RIGHT	1050	Bonnie Doon	55
151	97-004	246539	313601	820		89	S81	44		55	46	55 LOW PIPE		FALSE	RIVER	RIGHT	3800	King Edward Park	56
153	97-003	246506	313601		460	89	S78	44		55	28	55 LOW PIPE		FALSE	RIVER	RIGHT	3800	King Edward Park	57
154	96-025	229777	283621	804	436	87	76	44		55	49	54 LOW PIPE/WE	IR	FALSE	RIVER	RIGHT	3800	King Edward Park	58
155	96-060	246574	313601	864	477	87	S77	44		55	49	55 LOW PIPE/WE	IR .	FALSE	RIVER	RIGHT		King Edward Park	59
156	96-058	246570	313601	857		87	77	44		55	49	55 LOW PIPE/WE	IR.	FALSE	RIVER	RIGHT		King Edward Park	60
159	97-211	251618			423	85	S80		44	55	55			FALSE				King Edward Park	61
161	97-210	251792			432	85	S79		44	55	55			FALSE				King Edward Park	62
162	97-209	251797			437	85	S78		44	55	55			FALSE				King Edward Park	63
164 (n/m, 2024)	97-205	251779		804	408	83	S82	44		55	49		/FIR	FALSE	RIVER	RIGHT	3800	King Edward Park	64
176	97-001	244348		811	409	87	98	52		52	52		1	FALSE	RIVER	RIGHT		River Valley Riversid	
177	97-218	244318		809	406	88	98	52		52	52			FALSE	RIVER	RIGHT	+ +	River Valley Riversid	
178	97-217	244347	313621	804	401	92	98	256		52	52			FALSE	RIVER	RIGHT		Cloverdale	67
179	97-214	244406		807	420	97	N97	50		69	68			FALSE	RIVER	RIGHT	_		68
180 (n/m)	97-161	244671		808	418	103	97	46		50	5	+		FALSE	RIVER	LEFT		Rossdale	69
181	97-159	245429		869	447	104	S98	46		41	7	41 LOW PIPE	+	FALSE	RIVER	LEFT		Rossdale	70
182 (n/m)	97-158	245174		807	416	104	97	46		50		50 LOW PIPE		FALSE	RIVER	LEFT	+	Downtown	71
- 1 /	97-157	245040	313617	805	410	105	97	40	16	50	5	30 LOW FIFE			KIVEK	LEFI	1273		71
183 (n/m) 184 (n/m, 2024)	97-157	245040		806		106	97	+	46 46	70				FALSE	+	+	1	Rossdale Rossdale	73
184 (n/m, 2024) 185	97-156	262096		913	442	99	101	243	40	50	8	LOW PIPE		FALSE	RIVER	LEFT	1980	Downtown	73
191	97-138	262096			442							LOWINE		FALSE	_				75
			313613	813	405	100	SASK DR	188		52	12				RIVER	RIGHT		Strathcona	
193	97-014	246787	313608	848	405	102	85	37		79	13		+	FALSE	RIVER	RIGHT		Strathcona	76
194	97-013	246808		863	406	102	83	37		79	35		+	FALSE	RIVER	RIGHT		Strathcona	77
195	97-012	246799	313608	876	407	102	84	37		79	35	79 HIGH PIPE		FALSE	RIVER	RIGHT	900	Strathcona	78

IC Database Page 2

				1	1		1					Т	1		T		1	II	
			CADAG							CAN	CTDM			000		05	0.5		
IC Site#	Plan	IC MH#	CADAS- TRAL	SAN MH	STRM MH	CTDEET	AVENUE	OF NUM	IC AGE	_	STRM_ AGE	ICTYPE	Delete date	COR-	OF LOC1	UF_	OF_ DIA	NHOOD	COUNT
ic site#	_	IC WIT#	IRAL	SAN_IVIT	STRIVI_IVIT	SIREEI	AVENUE	OF_ NOW	IC_ AGE	AGE	AGE	ICITPE	Delete date	RECTED	OF_LOC1	LUCZ	DIA	NHOOD	COUNT
	97-																		
198	152a	244681	313617	024	818	105	S96	47	52			DUAL		FALSE	RIVER	LEFT		Rossdale	79
199	97-151	245068	313617	818	502	105	96	47	52			LOW PIPE		FALSE	RIVER	LEFT		Rossdale	80
200	97-146	245204	313613	821	443	101	94	188	52			LOW PIPE		FALSE	RIVER	RIGHT		Rossdale	81
201 (n/m, 2024)	97-148	245013	313613	802	416	101	S94	145	52	11	52	OVERFLOW/WI	EIR T	FALSE	RIVER	LEFT	300	Rossdale	82
202 (n/m, 2024)	97-163	245209	313618	805		100A	97	46	50					FALSE				Rossdale	83
204 220	97-221 96-006	245216 242107	242004	807	438	E101 113	96 L. N. 79	45	57 54	47	F.4	LOW PIPE		FALSE FALSE	RIVER	DICLIT	4500	Rossdale Parkallen	84 85
221	96-006	227702	313201 283615	807	438	109		22 22	54			OVERFLOW/WE	I I	FALSE	RIVER	RIGHT RIGHT	1500	Parkallen Pleasantview	86
224		243209	203013			89	61 83	116	56	54	54	LOW PIPE	EIR T	FALSE	KIVEK	RIGHT		Bonnie Doon	87
226	-	245209	313625	801		111	97	46	50	5	50	HIGH PIPE	1	FALSE	RIVER	LEFT	1275	Oliver	88
234	 	246738	313625	001		102 (Tommy Ban	~ .	1.4	71	5	30	INOTITIEL	1	FALSE	I (I V LIX		1213	Strathcona	89
235		262142	343603			102 (Tollilly Ball	S. Jasper AV		26					FALSE			+	Downtown	90
238	 	246111	313608			101	81	37	79			1	1	FALSE		1	-	Ritchie	91
240 (mon in 2024)		255527	010000		-	119	S102	46	71					FALSE				Oliver	92
244 (mon in 2024)		263246				102	110	54	68					FALSE				Central McDougall	93
245 (mon in 2024)		263247				102	110	54	68					FALSE				Central McDougall	94
249 (n/m, 2024)		242945	313218			Hawrelak Park		27	66					FALSE				Hawrelak Park	95
250 (mon in 2024)		255647	0.02.0			W114	N101	46	88					FALSE				Oliver	96
254 (mon in 2024)		245584				112	98	46	50					FALSE				Oliver	97
255 (03)		245344				104	98	46	50					FALSE				Downtown	98
258 (03)		247763	313614			103	Sask. Dr	37	71					FALSE				River Valley Walterda	a 99
265 (06, n/m)		240896				137	82	21	65			DUAL		FALSE				Laurier Heights	100
266 (08)		244346	313621	814	401	92	S98	256	46	46	46	LOW PIPE		FALSE	RIVER	RIGHT	500	Cloverdale	101
267 (09)		243667				92	98	256						FALSE	RIVER	RIGHT		Cloverdale	102
268 (09)		244163				Mill Creek		44						FALSE				Mill Creek Ravine No	r 103
269 (13, n/m)		261579				78	111	203				LOW PIPE		FALSE				River Valley Kinnaird	
273		330340				122	39A	2				DUAL		FALSE	Whitemud	RIGHT		Aspen Gardens	105
274		258480				123	112	31				LOW PIPE		FALSE				Inglewood	106
275		282732				37	122	88				LOW PIPE		FALSE				Beacon Heights/Berg	ır 107
276 (19)		243786	9343602			96A	98	51				TRANSVERSE		FALSE				Cloverdale	108
277 (19)		231393				111A	50	2				Dual MH with W	EIR	FALSE	1	RIGHT		Malmo Plains	109
278 (19)		287019				W71	130	74				LOW PIPE		FALSE	RIVER	LEFT		Balwin	110
279 (19)	ļ	287020				W70	130	74				LOW PIPE	-	FALSE	RIVER	LEFT	ļ	Balwin	111
280 (19)		287021				W69	130	74				LOW PIPE		FALSE	RIVER	LEFT		Balwin	112
281 (19)		286503				W70	129	74				LOW PIPE		FALSE	RIVER	LEFT	-	Balwin	113
282 (19)		286554				W69	129	74				LOW PIPE		FALSE	RIVER	LEFT		Balwin	114
283 (19)		286508		-		70	N127	74	1		1	LOW PIPE	1	FALSE	RIVER	LEFT	-	Balwin	115
82 (closed in 03, found open in 24)	07.070	261664	242604		420	W/70	114		F0	E0	40	OVEREI OW		FALSE					440
56 (03, found open in 24)	97-079 97-133	272607	343621 373219		429 433	W79 W123A	114	31	56 55			OVERFLOW OVERFLOW	1	FALSE	RIVER	LEFT	2400	Calder	116 117
285 (found open in 24)	97-133	266714	3/3219		433	35	102	71	59			DUAL	-	FALSE	RIVER	LEFI	2400	River Valley Rundle	117
286 (found open in 24)		266708		1		55	102 102 and 103	71	59	59	1	DUAL	1	FALSE	RIVER	1	-	River Valley Rundle	110
287 (found open in 24)	 	270908				29	102 and 103	71				DUAL	1	FALSE	RIVER	1	-	River Valley Rundle	119
289 (found open in 24)		230911				97	56	9				DUAL		FALSE	RIVER			Coronet Industrial	121
290 (found open in 24)		212422				101	40	9				DUAL		FALSE	RIVER		+	Strathcona Industrial	122
292 (found open in 24)		212349					39	9	<u> </u>		 	DUAL		FALSE	RIVER	<u> </u>	1	Strathcona Industrial	123
293 (found open in 24)		230841				98	60	9				DUAL		FALSE	RIVER		1	Coronet Industrial	124
200 (Iouna open III 24)		2000 4 I		l	<u> </u>	00	100	J	l		<u> </u>	POUL	1	IALGE	IVIAFIX	<u> </u>	1	Colonet industrial	124

IC Database Page 3

			CADAS-						SAN	N .	STRM		COR-		OF	OF_		
Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM	IC_ AGE AGI		AGE ICTYPE	Delete date		OF_LOC1	LOC2		NHOOD	COU
			1	1				ī			1		T	1	1	,		
<u>.OSED INTEI</u>	RCONNEC	CTIONS																
			344416	809		E34	N102	71	66	66	66 COMMON		TRUE	RIVER	LEFT	1200	Rundle Heights	
			344416	808		35	102	71	66	66	66 COMMON		TRUE	RIVER	LEFT		Rundle Heights	
			344416	807		36	102	71	66	66	66 COMMON	1-Feb-97	TRUE	RIVER	LEFT		Rundle Heights	
			344020		411	37	103	71	66	66	66 COMMON	1-Feb-97		RIVER	LEFT		Rundle Heights	
			344416	803		E34	103	71	66	66	66 COMMON		TRUE	RIVER	LEFT		Rundle Heights	
			374011	011	420	W38	123	88	80	80	80 HIGH PIPE	16-Dec-97		CREEK	LEFT		Bergman	4-
		1	374414	PW		HOOKE RD	HERMITAGE	74	64	64	64 PUMPWELL	4.5.1.07	TRUE	RIVER	LEFT		Canon Ridge	
		-	344023	869	447	55	S ADA BLVD	62	65 56	65	65 OVERFLOW	1-Feb-97		RIVER	LEFT	1200	River Valley Highland	1:
		+	343621 343602	000	417	W81 94	CAMERON	148	51	56	13 OVERFLOW 51 DUAL	1-Feb-97	TRUE	RIVER	LEFT	450	Riverdale	+
			343602	832		94 W94	CAMERON	148	51	51 51	51 DUAL	1-Feb-97 1-Feb-97		RIVER	LEFT		Riverdale Riverdale	+
			343602	831 830		E95	CAMERON	148	51	51	51 DUAL	1-Feb-97 1-Feb-97		RIVER	LEFT		Riverdale	+
			343602	829		E95	CAMERON	148	51	51	51 DUAL	1-Feb-97 1-Feb-97		RIVER	LEFT		Riverdale	+
			343610	804	404	88	102	53	52	50	52 LOW PIPE	1-Feb-97 1-Feb-97		RIVER	LEFT		Riverdale	+
			343610	810	404	87	102	53	67	52	67 LOW PIPE	1-Feb-97 1-Feb-97		RIVER	LEFT		Riverdale	+
			343609	868	411	89	ROWLAND RD		43	11	42 LOW PIPE	1-Feb-97		RIVER	LEFT		Riverdale	+
		+	343609	874	411	88	104	155B	24	10	24 LOW PIPE	1-Feb-97		RIVER	LEFT		Riverdale	+
			343609	873		88	104	155A	24	10	24 HIGH PIPE	1-Feb-97		RIVER	LEFT		Riverdale	+-
		+	343602	858	435	94	ROWLAND RD		42	11	42 LOW PIPE	1-Feb-97		RIVER	LEFT		River Valley Kinnaird	+
			373602	835	411	89	117	56	14	14	14 CHAMBER	1-Feb-97		RIVER	LEFT	1950	Parkdale	+-
			373601	000	429	N RACE TRK	NORTHLANDS		64	64	64 OVERFLOW	1-Feb-97		RIVER	LEFT		Edmonton Northland	s
			373601		411	E80	S116	56	57	57	57 OVERFLOW CH	1-Feb-97		RIVER	LEFT		Edmonton Northland	_
			373619	802	1	86	127	74	58	58	58 DROP MANHOL	1-Feb-97		RIVER	LEFT		Killarney	1
			373919	410		90	127	74	58	58	58 LOW PIPE TEE	1-Feb-97		RIVER	LEFT	7620	ranarricy	+
			373601	870	411	E80	116	56	57	57	57 CHAMBER	1-Feb-97		RIVER	LEFT		Parkdale	+
			343617	835	1	105	KINGSWAY	54	68	68	0. 0.0.0.02.0	1-Feb-97		RIVER	LEFT		Central McDougall	+
			343211	000	418	116	107	54	72	72	72 MEMBRANE HO	1-Feb-97		RIVER	LEFT		Queen Mary Park	+
			343605	811	1.10	113	102	46	50	30	50 OVERFLOW	12-Dec-96		RIVER	LEFT		Oliver	+
			343201	874	441	W115	102	46	50	8	50 LOW PIPE	12-Dec-96		RIVER	LEFT		Oliver	+
			343605	001	T1	114	N103	46	64	64	50 LOW PIPE TEE	1-Feb-97		RIVER	LEFT		Oliver	\top
			343223	007		E133	S116	31	54	54	54 COMMON	-	TRUE	RIVER	LEFT	2400	Woodcroft	
			373215	802		143	N YELLOWHD	30	61	61	61 COMMON		TRUE	RIVER	LEFT	1650	Brown Industrial	
		1	373224	007		ST ALBERT	130	31	66	66	66 COMMON		TRUE	RIVER	LEFT	2400	Bonadventure Indust	iri
			373215	801		149	SYELLOW HD	31	63	63	63 COMMON		TRUE	RIVER	LEFT	-	Brown Industrial	1
		1	373219		427	W124	129	31	55	55	55 OVERFLOW	31-May-97	TRUE	RIVER	LEFT	2400	Calder	T
			373219		417	W126	129	31	55	55	55 OVERFLOW	31-May-97	TRUE	RIVER	LEFT	2400	Calder	1
			433202	PW		E DUNLUCE	161	75	78	78	78 PUMPWELL	1-Feb-97		RIVER	LEFT	2250	Calder	T
		1	343603	854	417	100	101	48	26	5	26 LOW PIPE	1-Feb-97	TRUE	RIVER	LEFT	1500	Downtown	
			343602	049		96	GRIERSON	49	62	62	62 OVERFLOW CH	1-Feb-97	TRUE	RIVER	LEFT	1200	Downtown	1

C Site#	Plan	IC MH#	CADAS- TRAL	SAN MH	STRM MH	STREET	AVENUE	OF NUM		_	STRM_ AGE ICTYPE	Delete date	COR- RECTED	OF LOC1	OF_ LOC2	OF_ DIA	NHOOD	COUN
			343603	862		100	101	48	70	66		1-Feb-97		RIVER	LEFT		Downtown	
			313613	PW		101	S94	145	52	11		1-Feb-97		RIVER	LEFT		Rossdale	
			313618	821	443	101	94	145	52	11		1-Feb-97		RIVER	LEFT		Rossdale	
			313618	836	OF	E100	95	241	57	57	57 OVERFLOW		TRUE	RIVER	LEFT	375	Rossdale	
			313617	007	479	106	95	42	85	85	58 LOW PIPE	1-Feb-97	TRUE	RIVER	LEFT	600	Downtown	
			313617	504		103	96	47	52	33	52 OVERFLOW	1-Feb-97	TRUE	RIVER	LEFT	1050	Rossdale	
			313616	803	402	110	97	46	50	15	50 LOW PIPE	1-Feb-97	TRUE	RIVER	LEFT	1275	Oliver	
			313617	805	414	106	97	46	50	5	50 LOW PIPE	1-Feb-97	TRUE	RIVER	LEFT	1275	Downtown	
			313617	806	415	105	97	46	50	5	50 LOW PIPE	1-Feb-97	TRUE	RIVER	LEFT	1275	Downtown	
			313624	905	417	BELLAMY H	N97	46	50	50	50 LOW PIPE	1-Feb-97	TRUE	RIVER	LEFT	1275	Rossdale	
			313617	838	419	102	97	46	50	5	50 LOW PIPE		TRUE	RIVER	LEFT	1275	Rossdale	
			313618	802	402	101	97	46	50	5	50 LOW PIPE	1-Feb-97	TRUE	RIVER	LEFT	1275	Rossdale	
			313618	805	405	100A	97	46	50	5	50 LOW PIPE	1-Feb-97	TRUE	RIVER	LEFT	1275	Rossdale	
			313618	806	OF	100	97	45	50	5	50 OVERFLOW/WE	19-Jun-97	TRUE	RIVER	LEFT	600	Rossdale	
			313625	843		112	98	46	50	5	50 LOW PIPE TEE	1-Feb-97	TRUE	RIVER	LEFT	1275	Downtown	
			313623	827		W100	99	109	7	5	7 LOW PIPE TEE	24-Jun-97	TRUE	RIVER	RIGHT	500	Rossdale	
			313623	828	511	100	99	109	7	5	7 LOW PIPE	19-Jun-97	TRUE	RIVER	RIGHT	500	Rossdale	
			313623	828	511	100	99	109	7	7	7 LOW PIPE	1-Feb-97	TRUE	RIVER	RIGHT	500	Rossdale	
			313623	831	OF	SW LOW LVL	BRIDGE	48	29	5	29 HOLE		TRUE	RIVER	LEFT	1500	Rossdale	
			313617	873	417	BELLAMY RD	97	46	62	62	50 LOW PIPE	1-Feb-97	TRUE	RIVER	LEFT	1275	Rossdale	
			313623	819	497	E100	MCDONALD	48	57	10	29 LOW PIPE		TRUE	RIVER	LEFT	1500	Downtown	
			343214	801		137	N108	31	53	53	53 DUAL		TRUE	RIVER	LEFT	2400	North Glenora	
			343213	4		133	N109A	31	52	52	52 HIGH PIPE		TRUE					
			343218	819		133	N110A	31	52	52	52 LOW PIPE		TRUE					
			343214	29		139	N107A	31	52	52	52 LOW PIPE		TRUE					
			343214	56		135	N107A	31	52	52	52 LOW PIPE		TRUE					
			343213	18		133	107A	31	52	52	52 LOW PIPE		TRUE					
			343208	826		E132	STONY PLAIN	RD	48	48	15		TRUE					
			343202	17		125	SJASPER	46	34		PUMPWELL	1-Feb-97	TRUE					
			313224	811		W139	RAVINE DR	30	61	55	61 OVERFLOW		TRUE	RIVER	LEFT	1650	River Valley Capitol	Н
			313223	PW		ST GEORGE	VICTORIA C	123	64	29	55 PUMPWELL	1-Feb-97	TRUE	CREEK	LEFT	200	Glenora	
			343203	SOF		W132	TWEEDSMUIR	135	50	50	50 OUTFALL		TRUE	CREEK	LEFT	100	Glenora	
·			343203	839		E132	S103	125	54	54	DUAL	1-Feb-97	TRUE	CREEK	LEFT	200	Glenora	
			343204	841		139	101		65	65	51	12-Dec-96	TRUE					
			342823	PW		163	116	18	75	74		1-Feb-97	TRUE	RIVER	LEFT	2400	Norwester Industrial	
			372810	PW		154	123	18	80	80		1-Feb-97	TRUE	RIVER	LEFT	2400	Mitchell Industrial	
			342807	014		170	105	18	75	75	75 OVERFLOW	1-Feb-97	TRUE	RIVER	LEFT	2400	McNamara Industria	
			312820	PW		151	N94	29	58		PUMPWELL	1-Feb-97	TRUE	RIVER	LEFT	1650	Sherwood	
			282819	PW		WOLF WIL R	WOLF WIL C	13	75	75	75 PUMPWELL	1-Feb-97	TRUE	RIVER	LEFT	1950	Westridge	
			252420	PW		E WEDGEWOO	WEAVER DR	257	88		PUMPWELL	1-Feb-97	TRUE	CREEK	LEFT	900	Wedgewood Heights	
			313204	075		BV RD	81	21	59	57	58 LOW PIPE TEE	1-Feb-97	TRUE	RIVER	LEFT	1350	Laurier Heights	
			313204	PW		BV RD	VAL VIEW C	21	58	57	58 PUMPWELL	1-Feb-97	TRUE	RIVER	LEFT	1350	Parkview	

Page 5

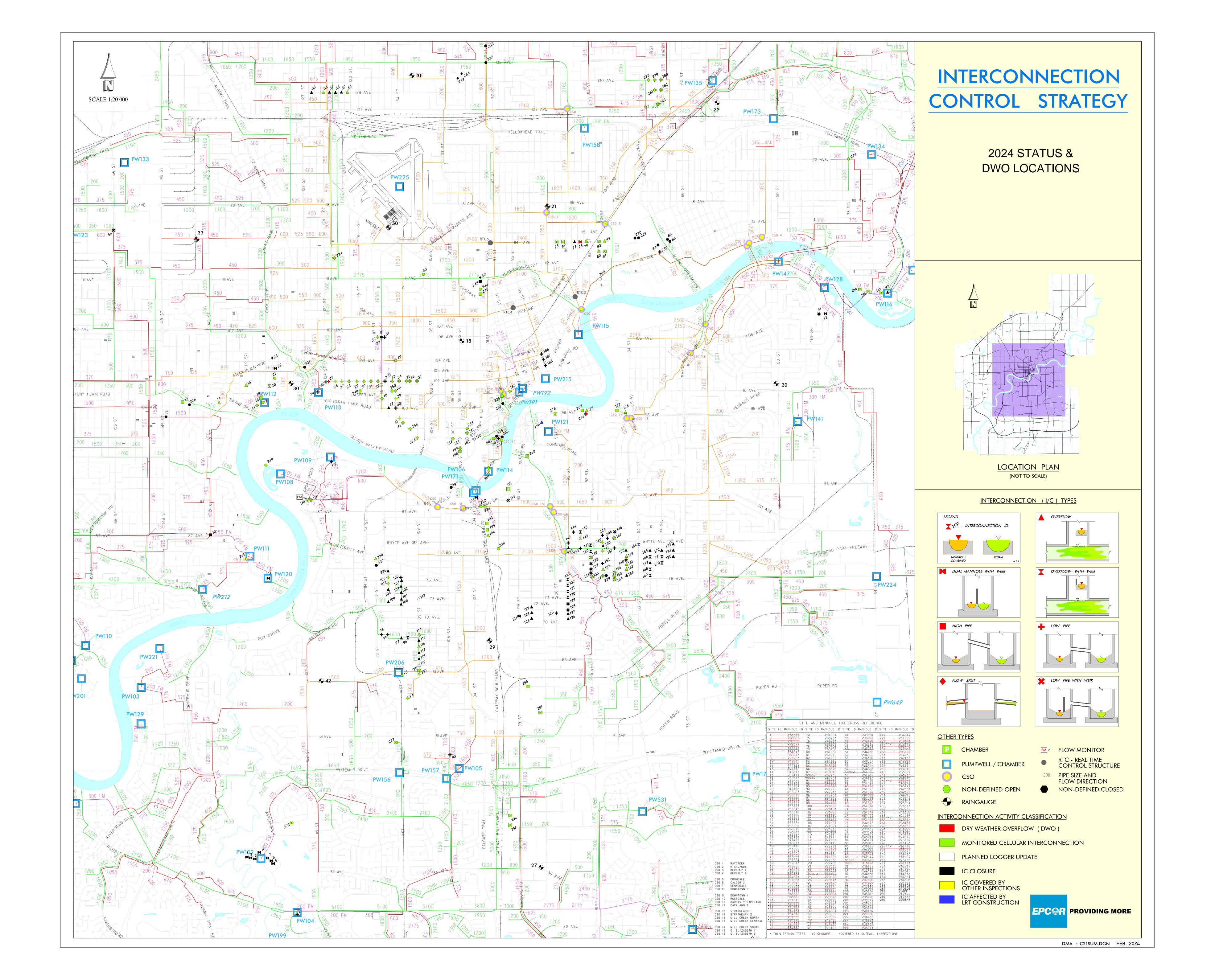
<u></u>		1		1	1	Т	1	T		1	1	1	I				T	П	
			CADAS-							SAN	STRM			COR-		OF	OF_		
IC Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM	IC_ AGE	AGE	AGE	ICTYPE	Delete date	RECTED	OF_LOC1	LOC2		NHOOD	COUNT
			313204	803		N BV RD	VAL VIEW C	21	60	60	60	COMMON	17-Jun-97	TRUE	RIVER	LEFT	1350	Parkview	82
			313207	085		VAL VIEW C		21	60	60	60	COMMON		TRUE	RIVER	LEFT	1350	Parkview	83
			313207	511		VAL VIEW C		21	60	60	60	COMMON		TRUE	RIVER	LEFT	1350	Parkview	84
			313207	087		VAL VIEW C		21	60	60	60	COMMON		TRUE	RIVER	LEFT	1350	Parkview	85
			313208	003		VAL VIEW C		21	60	60	60	COMMON		TRUE	RIVER	LEFT	1350	Parkview	86
			313208	002		VAL VIEW C		21	60	60	60	COMMON		TRUE	RIVER	LEFT	1350	Parkview	87
			313208	001		VAL VIEW C		21	60	60	60	COMMON		TRUE	RIVER	LEFT	1350	Parkview	88
			313207	088		E136	VAL VIEW C	21	60	60	60	COMMON		TRUE	RIVER	LEFT	1350	Parkview	89
			313204	077		VAL VIEW C	86	21	60	60	60	COMMON		TRUE	RIVER	LEFT		Parkview	90
			313204	076		VAL VIEW C	86	21	60	60		COMMON		TRUE	RIVER	LEFT	1350	Parkview	91
			344018		414	W65A	109	65	57			FLOW SPLIT		TRUE	RIVER	RIGHT		Capilano	92
			344007	850		W FULTON D	106	58	59			DROP MANHOL	1-Feb-97		RIVER	RIGHT		Fulton Place	93
			344007	467		E CAPILANO	106	58	59			CHAMBER	1-Feb-97		RIVER	RIGHT		Capilano	94
			313601	858		85	82	254	52				1-Feb-97		CREEK	RIGHT		Bonnie Doon	95
			313622	819	408	96A	98	51	60			OVERFLOW/WE	_		RIVER	RIGHT		Cloverdale	96
			313621	802	401	92	98	256	59			LOW PIPE	25-Jun-97		RIVER	RIGHT		Cloverdale	97
			313602	848		W94	S81	254	83			DROP MANHOL			CREEK	RIGHT		Mill Creek Ravine	98
			283620		436	91	70	92B	54		61	OUTFALL - NEV		TRUE	CREEK	RIGHT		Mill Creek Ravine	99
			283620		457	90	70	192	54			OUTFALL - NEV		TRUE	CREEK	RIGHT		Mill Creek Ravine	100
			283621		415	91	72	191	54			OUTFALL - NEV		TRUE	CREEK	RIGHT		Mill Creek Ravine	101
		229761?	283621		450	W87	73	93	56			OUTFALL - NEV		TRUE	CREEK	RIGHT		Mill Creek Ravine	102
			283620		420	91	66	91	54			OUTFALL - NEV		TRUE	CREEK	RIGHT		Mill Creek Ravine	103
			283611		419	92	63	194	54			OUTFALL - NEV		TRUE	CREEK	RIGHT		Mill Creek Ravine	104
		0004400	283611		423	91	63	193	61			OUTFALL - NEV		TRUE	CREEK	RIGHT		Mill Creek Ravine	105
		229112?	283611		416	90	65	91B	54			OUTFALL - NEV		TRUE	CREEK	RIGHT		Mill Creek Ravine	106
		229130?	283611		433	90	65	91A	54		54	OUTFALL - NEV		TRUE	CREEK	RIGHT		Mill Creek Ravine	107
			283621	004	413	W93	67	195	54			OUTFALL - NEV		TRUE	CREEK	RIGHT		Mill Creek Ravine	108
			283610	004	403 403	92	60	90	68			LOW PIPE	1-Feb-97	1	CREEK	RIGHT		Coronet Industrial	109
			283610	007		92 92	60 84	116	68			LOW PIPE	1-Feb-97		CREEK	RIGHT		Coronet Industrial	110
			313609	867 835	TUN 463	ļ	84	39	55 55			OUTFALL LOW PIPE	1-Feb-97 1-Feb-97		CREEK RIVER	RIGHT RIGHT		Mill Creek Ravine River Vallev Walterda	111 a 112
		+	313614 313614	PW	403	N QE RD E104	N SASK DR	37	56			PUMPWELL	1-Feb-97 1-Feb-97		RIVER	RIGHT		River Valley Walterda	
		+	313614	PW		E104 E104	N SASK DR	37	56			PUMPWELL	1-Feb-97 1-Feb-97		RIVER	RIGHT		River Valley Walterda	
		+	313614	003		102	SASK RIVER	38	56			CHECK VALVE	1-Feb-97 1-Feb-97		RIVER	RIGHT		River Valley Walterda	
		1	313613	424		LAVIGNE RD	91	188	88	90		OLIEUR VALVE	1-560-97	TRUE	RIVER	RIGHT		River Valley Walterda	
		+	313219	PW		118	SASK DR	32	53			BPUMPWELL	1-Feb-97		RIVER	RIGHT		Windsor Park	117
		1	313219	1 VV	446	116	N SASK DR	32	55			LOW PIPE TEE	12-Jun-97		RIVER	RIGHT		Windsor Park	118
		+	283619	803	403	97	S71	92B	60			LOW PIPE TEE	12-3un-97 1-Feb-97		CREEK	RIGHT		Hazeldean	119
		+	283625	840	428	E111	73	22	54			LOW PIPE/WEIF	10-Jun-97		RIVER	RIGHT		McKernan	120
		+	283221	818	720	112	74	22	54			OVERFLOW	1-Feb-97		RIVER	RIGHT		McKernan	121
		+	283221	808		112	N76	22	47	49		OVERFLOW	10-Jun-97		RIVER	RIGHT		McKernan	122
		+	283219	801		BELGRAVIA	N68	22	59			COMMON	10-Jun-97		RIVER	RIGHT		Lendrum Place	123
			203219	OU I		DELGRAVIA	DON	22	59	59	55	COMMON	10-Jun-97	IRUE	KIVEK	KIGHI	1500	Lendrum Place	12

																		T
			CADAS-						SA	N_	STRM_		COR-		OF_	OF_		
C Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM	IC_ AGE AG	E	AGE ICTYPE	Delete date	RECTED	OF_LOC1	LOC2	DIA	NHOOD	COUNT
			253221	038		113A	46	2	63	63	63 COMMON	12-Dec-96	TRUE	CREEK	RIGHT	2100	Malmo Plains	1
			253221	502		112	46	2	63	63	63 COMMON		TRUE	CREEK	RIGHT	2100	Malmo Plains	1:
			253221	040		111A	46	2	63	63	63 COMMON		TRUE	CREEK	RIGHT	2100	Malmo Plains	12
			253221	505		111A	N46	2	63	63	63 COMMON		TRUE	CREEK	RIGHT	2100	Malmo Plains	1:
			253221	022		111A	S48	2	63	63	63 COMMON		TRUE	CREEK	RIGHT	2100	Malmo Plains	1:
			253625		496	111A	N48	2	63	63	63 COMMON		TRUE	CREEK	RIGHT	2100	Malmo Plains	12
			253221	806		W111A	48	2	63	63	63 COMMON	1-Feb-97	TRUE	CREEK	RIGHT	2100	Malmo Plains	1;
			253221	807		W111A	48	2	63	63	63 COMMON	1-Feb-97	TRUE	CREEK	RIGHT	2100	Malmo Plains	13
			253221	808		W111A	48	2	63	63	63 COMMON	1-Feb-97	TRUE	CREEK	RIGHT	2100	Malmo Plains	13
			253221	504		113A	46	2	63	63	63 COMMON		TRUE	CREEK	RIGHT		Malmo Plains	13
			253212	051		E121	FAIRWAY	2	66	66	66 COMMON		TRUE	CREEK	RIGHT		Aspen Gardens	13
			253212	489		E121	FAIRWAY	2	66	66	66 COMMON		TRUE	CREEK	RIGHT		Aspen Gardens	13
			253212	053		E121	FAIRWAY	2	66	66	66 COMMON		TRUE	CREEK	RIGHT		Aspen Gardens	13
			253219	808		ASPEN DR	40	2	63	63	63 COMMON	12-Jun-97	TRUE	CREEK	RIGHT		Aspen Gardens	13
			253219	055		ASPEN DR	N40	2	63	63	63 COMMON		TRUE	CREEK	RIGHT		Aspen Gardens	13
			253219	056		ASPEN DR	N40	2	63	63	63 COMMON		TRUE	CREEK	RIGHT		Aspen Gardens	13
			253219	054	1	ASPEN DR	S41A	2	63	63	63 COMMON		TRUE	CREEK	RIGHT		Aspen Gardens	14
			253219	053		ASPEN DR	S41A	2	63	63	63 COMMON		TRUE	CREEK	RIGHT		Aspen Gardens	14
			253219		480	ASPEN DR	41A	2	63	63	63 COMMON		TRUE	CREEK	RIGHT		Aspen Gardens	14
			253219	052		ASPEN DR	N41A	2	63	63	63 COMMON		TRUE	CREEK	RIGHT		Aspen Gardens	14
			253219	057	100	ASPEN DR	N41A	2	63	63	63 COMMON		TRUE	CREEK	RIGHT		Aspen Gardens	14
			253202		466	WESTBRK DR		1	62	62	62 COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	14
			253202		465	WESTBRK DR		1	62	62	62 COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	14
			253202		468	WESTBRK DR		1	62	62	62 COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	14
			253202		464	WESTBRK DR		1	62	62	62 COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	14
		+	253202	040	467	WESTBRK DR		1	62	62	62 COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	14
			253203	018	404	WESTBRK DR		1	62	62	62 COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	15
			253203 253203	022	424	WESTBRK DR WESTBRK DR		1	62 62	62	62 COMMON 62 COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	1!
				022				1		62			TRUE		RIGHT	900	Westbrook Estate	
		+	253203 253203	020		WESTBRK DR WESTBRK DR		1	62 62	62 62	62 COMMON 62 COMMON		TRUE	CREEK CREEK	RIGHT	900	Westbrook Estate Westbrook Estate	1:
			253203	019		WESTBRK DR		1	62	62	62 COMMON		TRUE	CREEK	RIGHT	900	Westbrook Estate	15
		_	253203	019	423	WESTBRK DR		1	62	62	62 COMMON		TRUE	CREEK	RIGHT	900	Westbrook Estate	15
		+	253203	019	423	WESTBRK DR		1	62	62	62 COMMON		TRUE	CREEK	RIGHT	900	Westbrook Estate	1
		+	253208	018	417	WESTBRK DR		1	62	62	62 COMMON	1	TRUE	CREEK	RIGHT	900	Westbrook Estate	1:
		+	253208		416	WESTBRK DR		1	62	62	62 COMMON	1	TRUE	CREEK	RIGHT	900	Westbrook Estate	1:
		+	253208	016	710	WESTBRK DR	1	1	62	62	62 COMMON	 	TRUE	CREEK	RIGHT	900	Westbrook Estate	10
	+	+	253208	015	+	WESTBRK DK		1	62	62	62 COMMON	1	TRUE	CREEK	RIGHT	900	Westbrook Estate	10
		+	253208	010	413	WESTBRK DR		1	62	62	62 COMMON	1	TRUE	CREEK	RIGHT		Westbrook Estate	1
		+	253208	013	710	WESTBRK	FAIRWAY DR	1	62	62	62 COMMON		TRUE	CREEK	RIGHT	900		10
		+	253208	013	+	WESTBRK	W FAIRWAY	1	62	62	62 COMMON	 	TRUE	CREEK	RIGHT		Westbrook Estate	16

Ir-		1		1	1	Т	1		1				I		T		T	II.	
			CADAS-							SAN_	STRM_			COR-		OF_	OF_		
IC Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM	IC_ AGE	AGE	AGE	ICTYPE	Delete date	RECTED	OF_LOC1	LOC2	DIA	NHOOD	COUNT
			253208		410	WESTBRK	W FAIRWAY	1	62	62	62	COMMON		TRUE	CREEK	RIGHT	900	Westbrook Estate	165
			253208	010		WESTBRK DR		1	62	62	62	COMMON		TRUE	CREEK	RIGHT	900	Westbrook Estate	166
			253208	001	401	WESTBRK	MARLBORO	1	64	64		HIGH PIPE	1-Feb-97		CREEK	RIGHT		Westbrook Estate	167
			253213		422	MARLBORO R		1	66	66		COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	168
			253214	006		MARLBORO R		1	66	66		COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	169
			253214	005		MARLBORO R		1	66	66		COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	170
			253214	004		MARLBORO R		1	66	66		COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	171
			253213	038		MARLBORO R		1	66	66		COMMON		TRUE	CREEK	RIGHT		Westbrook Estate	172
			282810	002	403		58	12	74	71		HIGH PIPE	17-Jun-97		RIVER	RIGHT		River Valley Whitemu	
	-		282811	011	405	FORT EDM	-	14	70 80	70	70	PUMPWELL	1-Feb-97		RIVER	RIGHT RIGHT		River Valley Whitemu	
			252819	PW		RODNEY CR	NOO	101		7.5	00	PUMPWELL	1-Feb-97		RIVER			Rhatigan Ridge	175
			253613 253618	801 801		101	N39 S41	9	75 66	75 66		COMMON	1-Feb-97 1-Feb-97		RIVER RIVER	RIGHT RIGHT		Strathcona Industrial Strathcona Industrial	176 177
	-		253616	012	<u> </u>	W97	30	9	75	75		MEMBRANE HO	1-Feb-97 1-Feb-97		RIVER	RIGHT		Parsons Industrial	177
	1		253602	013		97	30	9	75	75		MEMBRANE HO	1-Feb-97 1-Feb-97		RIVER	RIGHT		Parsons Industrial	178
	1		253602	014		E97	30	9	75	75		MEMBRANE HO	1-Feb-97 1-Feb-97		RIVER	RIGHT		Parsons Industrial	180
			253603	014	445	L91	30	g g	73	73	7.0	MEMBRANE HO	1-Feb-97		RIVER	RIGHT		Parsons Industrial	181
	1		253203	-	412	E125	29A	g	78	78	78		1-Feb-97		RIVER	RIGHT		Blue Quill Estates	182
			200200		712	E101	96		57	70	70		7/2/1997		INVER	IXIOITI	0100	Dide Quii Estates	183
						100	90		52				1,2,1001	TRUE					184
							n. Borden Park	:	56					TRUE					185
146 (98)	97-207	243102	313610	856	438	87	S84	116	56	56	56	LOW PIPE/WEIF	{	TRUE	CREEK	RIGHT	750	Bonnie Doon	186
160 (98)	96-054	246554	313601	836	424	85	79	44	55	49	55	LOW PIPE/WEIF	₹	TRUE	RIVER	RIGHT	3800	King Edward Park	187
152 (98)	96-048	246559	313601	842	447	89	S79	44	55	53	55	LOW PIPE		TRUE	RIVER	RIGHT	3800	King Edward Park	188
222 (98)		246649	313602	876		94	81	254	55	22	55	OVERFLOW		TRUE	CREEK	RIGHT	1050	Mill Creek Ravine	189
137 (99)	96-056	246564	313601	850	457	91	S78	44	55	28		LOW PIPE/WEIF		TRUE	RIVER	RIGHT		King Edward Park	190
138 (99)	96-055	246552	313601	840	445	91	S79	44	55	53		LOW PIPE/WEIF	₹	TRUE	RIVER	RIGHT		King Edward Park	191
145 (99)	96-063	243986	313610	852		93	S84	116	55	30	50	OVERFLOW/WE	IR	TRUE	CREEK	RIGHT	750	Bonnie Doon	192
231 (99)		255784	343209			127	Villa Ave		88					TRUE					193
232 (99)		278099	403604			101	132		54					TRUE			1		194
233 (99)	00.00-	293599	403604	000		101	134	000	54			0)(505) 0)**		TRUE	005511	DICT			195
127 (00)	96-022	229524	283619	809		95	S71	92B	60	50		OVERFLOW		TRUE	CREEK	RIGHT		Hazeldean	196
126 (00)	96-024	229513 243861	283619	817	404	95	S70	92B	60	50		OVERFLOW		TRUE	CREEK	RIGHT		Hazeldean	197 198
142 (00)	96-061		313602	883	431	94	82 C. Ctany Dlain	245	52 50	50		LOW PIPE		TRUE	RIVER	RIGHT		Mill Creek Ravine	
23 (01) 115 (01)	96-089 96-017	256682 227606	343208 283616	826	437	132 109	S. Stony Plain	R 129 22	50	28 49		FLOW SPLIT OVERFLOW		TRUE	CREEK RIVER	LEFT RIGHT		Glenora Parkallen	199 200
123 (01)	96-017	227606	283618	815	431	98	LS. 71	92B	61	50		OVERFLOW		TRUE	CREEK	RIGHT		Hazeldean	200
129 (01)	96-020	229911	283621	856	448	95	72	191	54	50		LOW PIPE/WEIF	<u> </u>	TRUE	CREEK	RIGHT		Hazeldean	201
197 (01)	97-020	247820	203021	820	504	Walterdale Rd.	Queen Elizabe		52	50	34	LOW FIFE/WEIF	Ì	TRUE	ONLEN	NOTI	525	River Valley Walterda	
112 (02)	97-024	242968	313219	006	004	118	EDINBORO R		53	53	53	LOW PIPE		TRUE	RIVER	RIGHT	1200	Windsor Park	203
237 (02)	3, 024	242084	313201			113	N78	02	54	33	- 55	20771112		TRUE	I STV LIX		1200	TTIII GOOT I GIR	205
2 (02)	97-051	209501	253208	801		WESTBRK DR		1	88	62	62	DUAL		TRUE	CREEK	RIGHT	900	Westbrook Estate	206
- (<i>)</i>	0.001	200001	200200	1001	ı	E0 D (D	1	1.	1 30	UZ	J 02	12 37 12	l .	oL	J. (LL)			Jordi John Lotato	

Page 8

									T-									D.	
			CADAS-							SAN	STRM			COR-		OF	OF		
IC Site#	Plan	ІС МН#	TRAL	SAN MH	STRM MH	STREET	AVENUE	OF NUM	IC AGE	AGE	_	ICTYPE	Delete date		OF LOC1	_	DIA	NHOOD	COUNT
3 (02)	97-052	209500	253207	802		WESTBRK DR		1	88			DUAL			CREEK	RIGHT		Westbrook Estate	207
4 (02)	97-053	209498	253207	801		WESTBRK DR		1	88			DUAL			CREEK	RIGHT		Westbrook Estate	208
5 (02)	97-055	209510	253208	804		MARLBORO R		1	88			DUAL		TRUE	CREEK	RIGHT		Westbrook Estate	209
6 (02)	97-056	209548	253208	803		MARLBORO R		1	88	66	66	DUAL		TRUE	CREEK	RIGHT	900	Westbrook Estate	210
7 (02)	97-057	209545	253208	802		MARLBORO R		1	88	66	66	DUAL		TRUE	CREEK	RIGHT	900	Westbrook Estate	211
8 (02)	97-058	303873	253213	801		MARLBORO R		1	88		66	DUAL		TRUE	CREEK	RIGHT	900	Westbrook Estate	212
133 (02)	96-026	229869	283622	806	409		76	100	55			OVERFLOW/WE	IR	TRUE	CREEK	RIGHT		Ritchie	213
196 (02)	97-224	247806	313614	006		E104	N SASK DR	38	56			DUAL		TRUE	RIVER	RIGHT		River Valley Walterda	
10 (03)	97-179	240041	313207	013		142	BUENA VIST	24	58			HIGH PIPE		TRUE	RIVER	LEFT		Parkview	215
22 (03)	96-087	255979	343203	836		E132	N103	130	54		54	DUAL		TRUE	CREEK	LEFT	300	Glenora	216
24 (03) 55 (03)	97-171 97-136	255675 272597	343202	16	421	125	SJASPER	46 31	34		Er	LOW PIPE		TRUE	DIVED	LEET	2400	Coldor	217 218
55 (03) 58 (03)	97-136	272633	373219 373219		449	W125 W122	129 129	31	55 55			OVERFLOW OVERFLOW			RIVER RIVER	LEFT LEFT		Calder Calder	218 118
77 (03)	97-131	263772	343622		433	W122 W84	114	01	55			OVERFLOW		TRUE	NIVER	LETI	2400	Caluel	118
91 (03)	97-194	268186	344011		412	43	106B	105	58			LOW PIPE/WEIF	?		RIVER	RIGHT	1500	Gold Bar	120
92 (03)	97-193	268200	344011	802	712	E42	106B	105	58			DUAL	Ì	TRUE	RIVER	RIGHT		Gold Bar	121
93 (03)	97-069	231340	253624		405	106	N47	2	63			LOW PIPE		TRUE	CREEK	RIGHT		Empire Park	122
40 (03)	97-143	239392	313625		402	114	100	46	50	7		LOW PIPE		TRUE	RIVER	LEFT	1275	Oliver	123
229 (03)		270363	344005				n. Borden Park		56			-		TRUE				-	124
257 (03)		245306				100	McDonald		57					TRUE				Downtown	125
260 (03)		240920				Buena Vista Rd	81		58					TRUE					126
84 (05)	97-225	270533		207533		W72	113		57					TRUE					127
96 (05)	97-030	227748	283616		425	110	N66	22	54			OVERFLOW/WE	IR		RIVER	RIGHT		Parkallen	128
97 (05)	96-015	227670	283616		415	111	L. S. 67	22	54			OVERFLOW			RIVER	RIGHT		Parkallen	129
100 (05)	96-034	228096	283625		415	111	72	22	54			OVERFLOW		TRUE	RIVER	RIGHT		McKernan	130
101 (05)	96-036	228103	283625		421		73	22	54	48		OVERFLOW		TRUE	RIVER	RIGHT		McKernan	131
102 (05) 103 (05)	97-033 97-034	228099 228154	283625 283625		420 407	111	74 75	22 22	54 54	48 48		OVERFLOW OVERFLOW		TRUE	RIVER RIVER	RIGHT		McKernan McKernan	132 133
103 (05)	97-034	228082	283625		426		76	22	54			OVERFLOW		TRUE	RIVER	RIGHT		McKernan	134
261 (05)	91-033	238144	203023		420	151	95	22	58		34	OVERTEOW		TRUE	IXIVLIX	KIGITI	1300	MCNeman	135
130 (07)	96-029	229891	283622	829	470	95	73	100	55		55	OVERFLOW/WE	I	TRUE	CREEK	RIGHT	300	Ritchie	136
166 (07)	97-199	251790	314005		430	81	S80	44	55			OVERFLOW/WE		TRUE	RIVER	RIGHT		King Edward Park	137
105 (07)	96-038	228152	283625	802	401	111	N76	22	54	47		LOW PIPE	·		RIVER	RIGHT		McKernan	138
108 (07)	96-004	224871	283221		451	112	N73	22	54	47		OVERFLOW		TRUE	RIVER	RIGHT		McKernan	139
109 (07)	96-005	224875	283221		454	112	N72	22	54	49	54	OVERFLOW		TRUE	RIVER	RIGHT	1500	McKernan	140
236 (07)		242092	313201			112	S78		86			OVERFLOW		TRUE				Parkallen	141
263 (07)		278090				105	130		59					TRUE				Lauderdale	142
121 (07)	96-019	229419	283618			99	70	92B	61			DUAL			CREEK	RIGHT		Hazeldean	143
54 (07)	97-180	254704	342821	025	410	156	116	18	75	58	75	LOW PIPE/WEIF	?	TRUE	RIVER	LEFT	2400	Alberta Park Industria	
264 (05, n/m)	07.010	278091	0.10		ļ	105	130		59					TRUE				Lauderdale	145
206 (09)	97-213	243177		866	400	W87	S83	4.4	49	- 4^		LOW PIPE		TRUE	חויירם	DICLIT	0000	Bonnie Doon	146
168 (03)	97-197	252003	314005	828	438	81	S78	44	55			OVERFLOW/WE	:IK I		RIVER	RIGHT		King Edward Park	147
174 (03)	97-203 97-212	251466 251782	314004 314005	816	412	77 85	S81	44	56			OVERFLOW OVERFLOW		TRUE	RIVER	RIGHT	3800	King Edward Park	148 149
158 (10) 47 (10)	97-212	239410	314005	815	416	115	S81 100	46	55 54	55 30		OVERFLOW		TRUE	RIVER	LEFT	1075	Oliver	149
122 (10)	97-144	239410	283623	833	 	98	S72	92B	61	49		OVERFLOW		TRUE	CREEK	RIGHT		Hazeldean	151
125 (10)	96-023	229520	283619	806	402	96	S71	92B	60			LOW PIPE		TRUE	CREEK	RIGHT		Hazeldean	152
131 (10)	96-028	229883	283622		426		74	100	55			OVERFLOW/WE	IR	TRUE	CREEK	RIGHT		Ritchie	153
132 (10)	96-027	229875	283622	812	420	95	75	100	55			OVERFLOW/WE		TRUE	CREEK	RIGHT		Ritchie	154
102 (10)	30-021	223013	200022	U 12	740	الات	10	100	ეე	14	່ວວ	OVERN LOW/WE	-II \	TRUE	OILEL	INGUI	300	LUTCHIE	104


	1				1	1	1	T		ı				1	1	1	II.	
			CADAS-							SAN	STRM		COR-		OF	OF_		
IC Site#	Plan	IC MH#	TRAL	SAN_MH	STRM_MH	STREET	AVENUE	OF_ NUM	IC_ AGE	AGE	AGE	ICTYPE Delete date	_	OF_LOC1	_		NHOOD	COUNT
124 (n/m) (10)	97-028	229422	283618	819		98	S70	92B	61	50	61	OVERFLOW	TRUE	CREEK	RIGHT	750	Hazeldean	155
165 (11)	97-200	251786	314005	813	459	81	S81	44	55	50	55	OVERFLOW	TRUE	RIVER	RIGHT	3800	King Edward Park	156
171 (11)	96-075	251791	314005	818	431	79	S80	44	56	50	56	OVERFLOW/WEIR	TRUE	RIVER	RIGHT	3800	King Edward Park	157
172 (11)	97-201	251787	314005	813	422	79	S81	44	56	50	56	OVERFLOW	TRUE	RIVER	RIGHT	3800	King Edward Park	158
230 (n/m) (12)		270510	344005				n. Borden Park		56				TRUE				Edmonton Northlands	s 159
243 (n/m) (12)		263242				102	111		68				TRUE				Central McDougall	160
167 (12)	97-198	251795	314005	824	435	81	S79	44	55	49	55	OVERFLOW	TRUE	RIVER	RIGHT	3800	King Edward Park	161
169 (12)	97-196	231975	314005	832	443	81	S77	44	55	52	55	OVERFLOW/WEIR	TRUE	RIVER	RIGHT	3800	King Edward Park	162
170 (12)	96-078	251796	314005	826	436	79	S79	44	56	49	56	OVERFLOW/WEIR	TRUE	RIVER	RIGHT	3800	King Edward Park	163
173 (12)	97-204	251711	314004	808	404	77	S82	44	56	50	56	OVERFLOW	TRUE	RIVER	RIGHT	3800	King Edward Park	164
175 (12)	97-202	251758	314004	826	415	77	S80	44	56	50	56	OVERFLOW	TRUE	RIVER	RIGHT	3800	King Edward Park	165
128 (13) OF 2010-103	96-030	229914	283622	855	457	95	71	92B	60	50	60	LOW PIPE/WEIR	TRUE	CREEK	RIGHT	750	Hazeldean	166
272 (14) RPN 0016		255496				W115	102						TRUE				Oliver	167
157	96-045	246533	313601	815	421	87	81	44	55	49	55	LOW PIPE	TRUE	RIVER	RIGHT	3800	King Edward Park	168
140 (16) OF 2011-23	96-046	246491	313601	818	425	91	S81	44	55	22	55	OVERFLOW/WEIR	TRUE	RIVER	RIGHT	3800	King Edward Park	169
262 (05, closed '16)		255832				W123	102	46	47				TRUE				Oliver	170
259 (03, closed '16)		270391				73	N112	56	56				TRUE				Virginia Park	171
57 (18)	97-132	272618	373219		440	W123	129	31	55	55	55	OVERFLOW	TRUE	RIVER	LEFT	2400	Calder	172
59 (18)	97-130	272636	373219		452	W121	129	31	55	55	55	OVERFLOW	TRUE	RIVER	LEFT	2400	Calder	173
136 (18)	96-057	229992	313601	856	464	91	77	44	55	28	55	LOW PIPE/WEIR	TRUE	RIVER	RIGHT	3800	King Edward Park	174
141 (18)	97-005	246486	313601	806	415	91	S82	44	55	31	55	OVERFLOW/WEIR	TRUE	RIVER	RIGHT	3800	King Edward Park	175
150 (18)	96-044	246489		809		89	S82	44	55	46	55	LOW PIPE	TRUE	RIVER	RIGHT	3800	King Edward Park	176
98 (19)	96-002	224786		807	418	112A	67	22	54	54	54	LOW PIPE	TRUE	RIVER	RIGHT	1500	Parkallen	177
99 (19)	96-001	224790	283220	811	421	112	67	22	51	51	51	LOW PIPE	TRUE	RIVER	RIGHT	1500	Parkallen	178
117 (19)	96-011	227631	283615		428	109	64	22	54	50	54	OVERFLOW	TRUE	RIVER	RIGHT	1500	Parkallen	179
118 (19)	96-012	227633	283615		429	109	63	22	54	49	54	OVERFLOW	TRUE	RIVER	RIGHT	1500	Parkallen	180
144 (19)	96-062	243904	313609	869	870	W93	L. S. 84	116	55	30	55	LOW PIPE	TRUE	CREEK	RIGHT	750	Bonnie Doon	181
163 (19)	97-208	231913	314005		442	85	S77	44	55	55	49	OVERFLOW	TRUE				King Edward Park	182
223		246523	313601	814		93	81	22	55			LOW PIPE	TRUE				Bonnie Doon	183
52 (22)	97-107	263239	343617	857		102	111	54	68	14	68	FLOW SPLIT	TRUE	RIVER	LEFT	3000	Spruce Avenue	184
51 (22)	97-108	256922	343210	846	412	W115	106	54	83	64	83	LOW PIPE	TRUE	RIVER	LEFT	3000	Queen Mary Park	185
284 (22)		221327				172A	76						TRUE				Callingwood	186

																			$\overline{}$
			CADAS-							SAN	STRM			COR-		OF	OF_		
IC Site#	Plan	IC MH#	TRAL	SAN MH	STRM MH	STREET	AVENUE	OF_ NUM	IC_ AGE		AGE	ICTYPE	Delete date		OF_LOC1			NHOOD	COUNT
Removed from database ((emergen	cy pump overf	low)	_	_				_						_				T
1 (02)	97-070	208392	253203	007	412	125	29A	1	76			LOW PIPE			CREEK	RIGHT	900	Blue Quill Estates	1
9 (02)	97-059	223283	282810	PW	403	E WHITEMUD	58	12	72	70	72	PUMPWELL			RIVER	RIGHT	750	River Valley Whitemu	ıd
11 (02)	97-187	223504		006		S133	BV RD	21	58	59	58	DUAL			RIVER	LEFT	1350	Laurier Heights	T
87 (02)	97-072	270916	344416	053	469	29	102	71	66	66	66	OVERFLOW			RIVER	LEFT	1200	Rundle Heights	1
																			1
Removed from database	does not	exist)																	
227 (03)		256917	343211		407	116	106	54	72	72	72	DROP MANHOL	E STRUCTURI		RIVER	LEFT	3000	Queen Mary Park	
228 (03)		241889	343205		436	145	SUMMIT DR	30	50						RIVER	LEFT	1650	Crestwood	
239 (03)		246519				89	S77												
241 (03)		265734				113	102												
242 (03)		265734				113	102												
85 (04)	97-226	270523		270523		E71	113		51										
86 (04)	97-227	270376		270376		E71	113		51										
203 (04)	97-170	244717	313618	806	407	100	97	45	50	5	50	LOW PIPE			RIVER	LEFT	600	Rossdale	
205 (04)	97-220	321318				E101	96		85										
225 (n/m) (04)		245210	313623			100	97		50										
248 (n/m) (04)		266011				W109	111		68										
256 (03,n/m) (04)		262720				96	103		49										
Removed from database	(discharge	e back to com	bined syste	<u>em)</u>															
186 (04)	97-082	262009	343609	815	814	95	101	152	49	7	49	LOW PIPE			RIVER	LEFT	450	Boyle Street	
187 (04)	97-083	262749	343609	810	402	95	102A	152	49	7	49	LOW PIPE			RIVER	LEFT	450	Boyle Street	
188 (04)	97-084	262747	343609	809	401	95	103	152	49	7	49	LOW PIPE			RIVER	LEFT	450	Boyle Street	
246 (n/m) (04)		262534				W105	106		69										
247 (n/m) (04)		262495				W106	106		69										
192 (n/m) (10)	97-015	246867	313613	843	412	100	89	188	53	53	53	LOW PIPE/WEIF	₹		RIVER	RIGHT	1200	River Valley Walterda	ale
270 (13)		270548				60E	112											Highlands	
271 (13)		284287				57E	112											Highlands	

Notes:

(n/m) = not monitored

(xx) indicates the year of discovery or closure of the I/C (if known)

Storm and CSO Volumes and Loadings

This section is submitted in compliance with Section 4.4.10 and 6.3.3 of the Approval No. 639-03-06 for the one year period ending December 31, 2024. The monthly volumes discharged to the North Saskatchewan River (NSR) are indicated in Figures 1 and 2 for the following locations:

- 30 Avenue Storm Outfall
- Groat Road Storm Outfall
- Quesnell Storm Outfall
- Kennedale Storm Outfall
- Rat Creek CSO
- Highlands CSO
- Capilano CSO
- Cromdale CSO
- Strathearn CSO

Estimated and measured storms volumes are indicated on Figure 3. Monitored CSO volumes are indicated on Figure 4. A tabular summary of the flow volumes and estimations of total monthly volumes discharged is also included (Table 2). Of the sites reported, the storm and combined system contributed 99.9% and 0.1% of the volume, respectively.

The total (measured and estimated) flow volume discharged from the storm sewer system to the NSR and tributaries in 2024 was 125.8 million m³, a 20.3% decrease compared to the 2023 volume of 151.3 million m³. This decrease is due to 2024 being a drier year compared to 2023. The 2024 flow volumes from the 30th Avenue, Groat Road, Quesnell, and Kennedale storm outfalls were 5.8, 2.9, 13.1, and 7.6 million m³, respectively. The volume of flows from Mill Creek was 15.2 million m³.

For the combined sewer system, the total CSO flow volume discharged to the NSR in 2024 was 223,833 m³, a 279 % decrease compared to the 2023 volume of 608,473 m³. This large decrease is due to 2024 being a drier year than 2023. The 2023 flow volumes from the Rat Creek, Highlands, Capilano, Cromdale, and Strathearn CSOs, were 95,060; 52,932; 12,545; 70; and 4 m³, respectively.

Water quality samples were obtained for the majority of the significant discharge events during the year. As well, a total of 90 dry-weather (baseflow) water quality samples were obtained from the storm sewer system. Table 3 provides a tabular summary of calculated flow-weighted mean monthly and annual concentrations for different constituents and the number of events sampled for water quality analysis.

In accordance with our Approval requirements, total monthly loadings to the North Saskatchewan River have been calculated for the above sites. Summaries of measured loads and estimated total loads for the City of Edmonton's storm and combined sewer system are included in Table 4. The reported loads were calculated using daily constituent concentrations, including storm sewer baseflow data, and the measured or estimated flow volumes. The sum of storm and CSO loading to the NSR consists of about 10,054 tonnes of total suspended solids (TSS), 1,353 tonnes of biochemical oxygen demand (BOD), 55 tonnes of total phosphorous (TP), 119 tonnes of nitrite and nitrate ($NO_2 + NO_3$), 56 tonnes of ammonia (NH_3), 238 tonnes of total Kjeldahl nitrogen (TKN), 19,777 tonnes of chloride and 10,085 x 10^{12} MPN of *E. coli*. Summaries of the Rat Creek CSO concentration statistics are shown in Table 5.

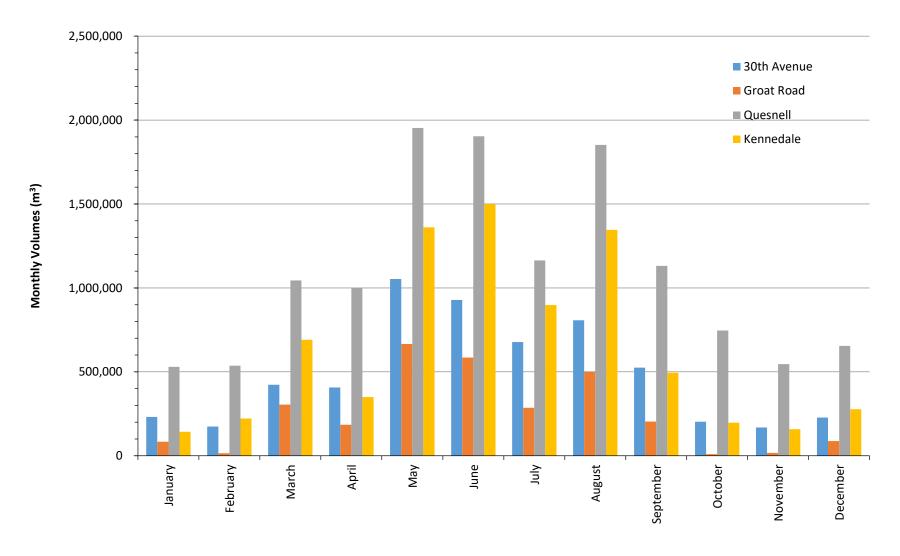


Figure 1: Measured + Estimated Storm Volume in 2024

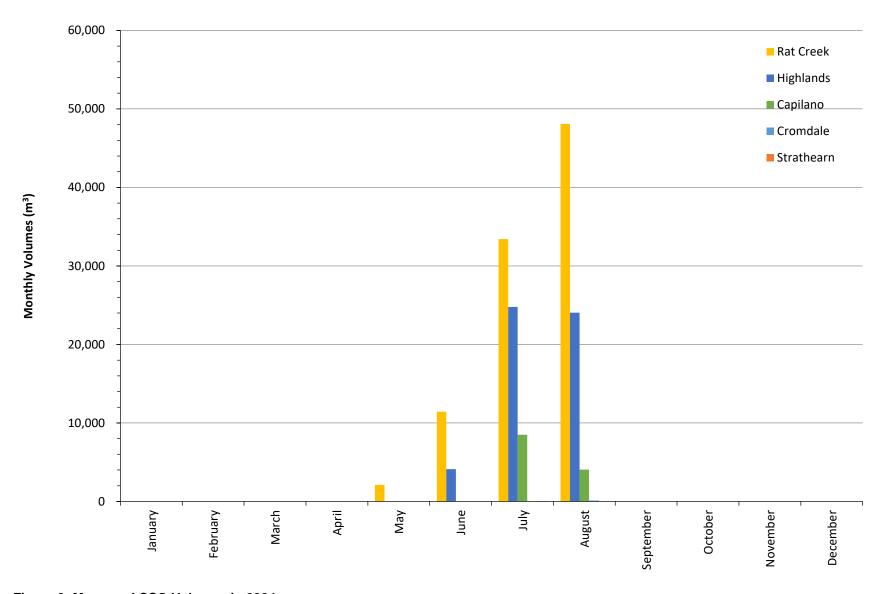


Figure 2: Measured CSO Volumes in 2024

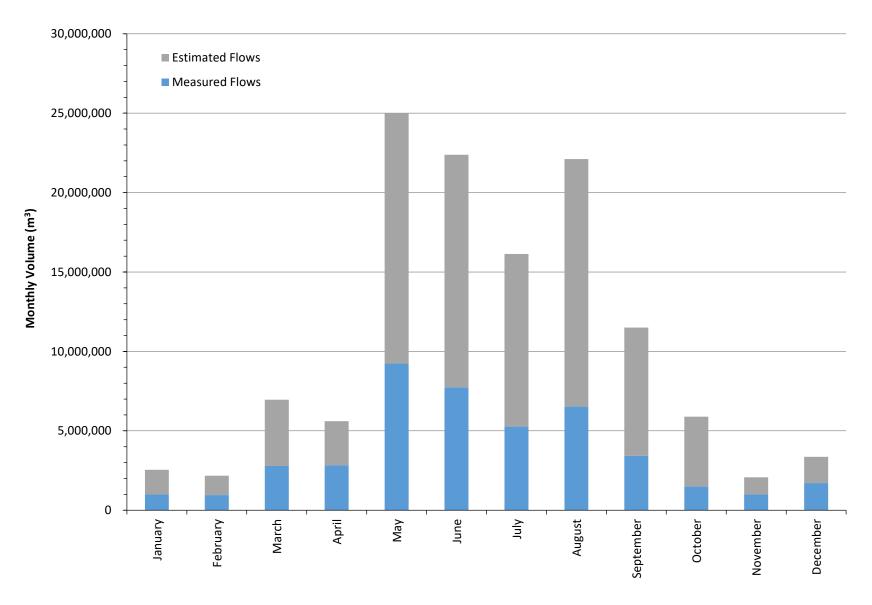


Figure 3: Total Storm (Measured + Unmonitored) Volumes in 2024 (All Storm Outfalls to NSR and Creeks)

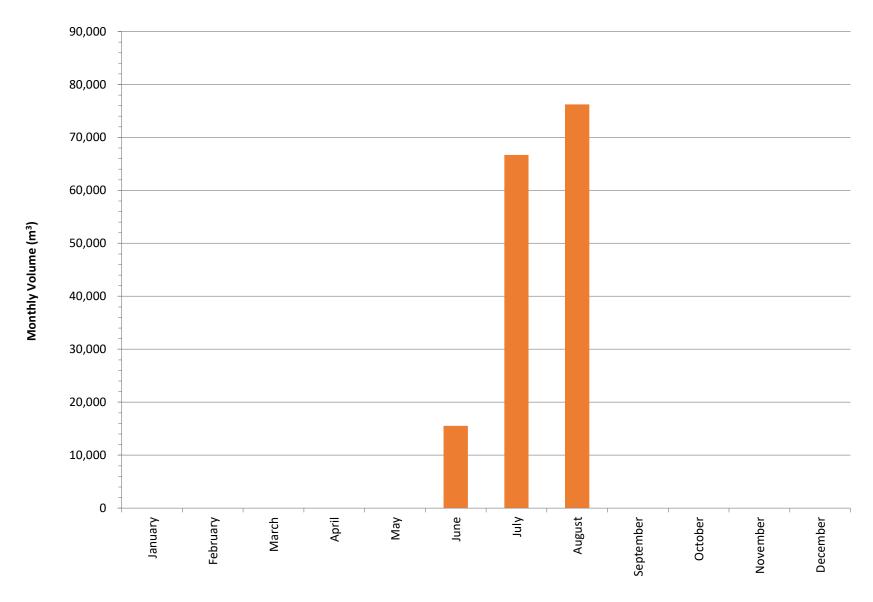


Figure 4: Monitored CSO Volume in 2024

Table 2: 2024 Annual Discharge Volumes (in Cubic Meters)

		Storm Ou	tfalls			C	SO Outfalls		
Month	30th Avenue	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Cromdale	Strathearn
January	231,445	83,186	529,356	142,404	0	0	0	0	0
February	174,176	15,331	536,584	221,883	0	0	0	0	0
March	423,044	304,486	1,044,439	690,890	0	0	0	0	0
April	406,546	185,152	1,000,818	349,623	0	0	0	0	0
May	1,052,978	666,531	1,953,171	1,360,783	2,115	0	0	0	0
June	928,234	584,916	1,903,431	1,499,967	11,428	4,116	0	0	0
July	677,363	285,293	1,163,600	897,978	33,423	24,775	8,502	0	4
August	807,526	499,576	1,851,821	1,346,091	48,094	24,041	4,043	70	0
September	525,130	203,977	1,131,541	494,388	0	0	0	0	0
October	203,098	9,750	745,922	197,525	0	0	0	0	0
November	168,425	16,641	546,401	158,378	0	0	0	0	0
December	227,238	87,928	655,119	277,643	0	0	0	0	0
Total	5,825,204	2,942,767	13,062,203	7,637,552	95,060	52,932	12,545	70	4

	Measured	l Flows	³ Unmonitored	Flows	Total Flo	ow
Month	¹ Storm Outfalls	² CSO Outfalls	Storm Outfalls CS	SO Outfalls	Storm Outfalls C	SO Outfalls
January	997,214	0	1,545,609	0	2,542,824	0
February	950,305	0	1,227,785	0	2,178,090	0
March	2,784,684	0	4,173,516	0	6,958,200	0
April	2,839,992	0	2,770,153	0	5,610,145	0
May	9,231,936	0	15,782,771	2115	25,014,707	2,115
June	7,747,450	15,544	14,635,527	0	22,382,977	15,544
July	5,262,414	66,704	10,877,973	0	16,140,387	66,704
August	6,521,912	76,248	15,587,636	0	22,109,548	76,248
September	3,429,724	0	8,069,667	0	11,499,391	0
October	1,489,628	0	4,396,538	0	5,886,166	0
November	996,560	0	1,076,504	0	2,073,064	0
December	1,709,794	0	1,653,759	0	3,363,553	0
Total	43,961,614	158,496	81,797,438	2,115	125,759,051	160,611

Note: 1 Measured Storm flows are actual flow volumes measured from Storm outfalls: 30th Ave, Quesnell, Groat Road, Kennedale Storm/STS/Wetland, Belgravia, Mill Creek.

²Measured CSO flows are actual flow volumes measured from CSOs: Rat Creek, Capilano, Highlands, Cromdale, and Strathearn.

³Unmonitored flow volumes include estimates from monitored sites when measurements not available in addition to other remaining sites.

Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituent Concentrations for 2024

Total Suspended Solids (mg/L)

_		Storm Outfa	alls			CSO Outfalls		No. of Sam	ples
Month	30th Avenue	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	CSO
January	111	533	75	8	-	-	-	11	0
February	38	11	9	8	-	-	-	10	0
March	96	232	71	28	-	-	-	31	0
April	120	346	111	63	-	-	-	16	0
May	124	169	103	49	1,000	-	-	46	0
June	83	167	81	82	1,116	1,377	-	36	2
July	45	109	49	28	332	332	332	34	1
August	43	148	51	28	248	248	248	49	1
September	80	114	39	25	-	-	-	21	0
October	46	52	4	9	-	-	-	11	0
November	44	275	31	13	-	-	-	10	0
December	181	178	86	26	-	-	<u> </u>	13	0
Mean Annual FWC =	85	183	66	42	399	375	305	288	4

Mean Annual FWC for all Storm = 75

Mean Annual FWC for all CSO = 384

Biochemical Oxygen Demand (mg/L)

		Storm Outf	alls			CSO Outfalls		No. of Sam	ples
Month	30th Avenue	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	CSO
January	20	51	11	5	-	-		11	0
February	9	3	4	4	-	-	-	10	0
March	13	26	13	12	-	-	-	31	0
April	11	16	16	10	-	-	-	15	0
May	6	12	8	9	179	-	-	47	0
June	11	17	7	9	204	260	-	36	2
July	13	52	11	7	110	110	110	32	1
August	16	14	6	7	94	94	94	49	1
September	11	14	5	6	-	-	-	21	0
October	22	10	14	5	-	-	-	11	0
November	18	37	6	9	-	-	-	10	0
December	42	27	9	7	-	-	<u> </u>	13	0
Mean Annual FWC =	13	21	9	8	115	114	105	286	4

Mean Annual FWC for all Storm = 11

Mean Annual FWC for all CSO = 114

Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituent Concentrations for 2024 (Cont.)

Total Phosphorus (mg/L)

		Storm Outfa	alls				No. of Samples		
Month	30th Ave	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	cso
January	0.7	1.2	0.5	0.4	-	-	-	12	0
February	0.6	0.1	0.3	0.4	-	-	-	10	0
March	0.7	1.2	0.4	0.8	-	-	-	33	0
April	0.4	0.9	0.4	0.3	-	-	-	16	0
May	0.3	0.4	0.9	0.2	2.7	-	-	47	0
June	0.3	0.5	0.3	0.3	2.7	2.7	-	35	0
July	0.3	0.7	0.3	0.2	2.7	2.7	2.7	36	1
August	0.6	0.4	0.3	0.2	7.8	7.8	7.8	51	4
September	0.4	0.6	0.3	0.3	-	-	-	26	0
October	0.5	1.2	0.3	0.5	-	-	-	11	0
November	0.6	1.9	0.4	0.4	-	-	-	11	0
December	1.3	1.8	0.4	0.3	-	-	-	14	0
Mean Annual FWC =	0.5	0.7	0.4	0.3	5.3	5.0	4.3	302	5

Mean Annual FWC for all Storm = 0.4

Mean Annual FWC for all CSO = 5.1

Nitrite + Nitrate (mg/L)

		Storm Outfa	alls				No. of Samples		
Month	30th Ave	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	cso
January	3.5	1.3	1.5	2.5	-	-		12	0
February	2.8	0.9	1.3	1.4	-	-	-	10	0
March	1.1	0.5	0.7	0.6	-	-	-	33	0
April	1.3	0.6	0.7	0.7	-	-	-	16	0
May	0.8	0.6	0.7	0.5	0.2	-	-	47	0
June	1.2	0.5	0.8	0.8	0.2	0.2	-	35	0
July	1.6	0.5	1.1	0.7	0.2	0.2	0.2	36	1
August	0.8	0.6	0.8	0.7	0.0	0.1	0.1	47	4
September	1.0	0.8	1.0	0.9	-	-	-	26	0
October	2.0	1.1	1.0	1.1	-	-	-	11	0
November	3.3	1.1	1.1	1.7	-	-	-	11	0
December	1.6	1.3	0.8	1.3	-	-	<u> </u>	14	0
Mean Annual FWC =	1.4	0.6	0.9	0.8	0.1	0.1	0.1	298	5

Mean Annual FWC for all Storm = 0.9

Mean Annual FWC for all CSO = 0.1

Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituent Concentrations for 2024 (Cont.)

Ammonia Nitrogen (mg/L)

		Storm Outf	alls				No. of Samples		
Month	30th Ave	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	CSO
January	1.3	1.6	0.7	1.1	-	-		12	0
February	1.5	1.1	0.7	2.1	-	-	-	10	0
March	0.8	0.9	0.7	1.4	-	-	-	33	0
April	0.6	0.6	0.7	0.6	-	-	-	16	0
May	0.3	0.5	0.3	0.2	3.4	-	-	47	0
June	0.3	0.3	0.2	0.2	3.4	3.4	-	35	0
July	0.3	0.5	0.3	0.3	3.4	3.4	3.4	36	1
August	1.4	0.5	0.3	0.3	5.2	5.2	5.2	51	4
September	0.6	0.7	0.3	0.5	-	-	-	26	0
October	1.2	0.4	0.3	1.3	-	-	-	11	0
November	1.0	1.5	0.6	1.4	-	-	-	11	0
December	0.8	1.4	0.7	0.9	-	-	-	14	0
Mean Annual FWC =	0.7	0.6	0.4	0.5	4.3	4.2	3.9	302	5

Mean Annual FWC for all Storm = **0.5**

Mean Annual FWC for all CSO = 4.2

Total Kjeldahl Nitrogen (mg/L)

		Storm Outf	alls				No. of Samples		
Month	30th Ave	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	CSO
January	3.1	5.7	1.9	2.8	-	-	-	12	0
February	2.7	1.6	1.3	3.0	-	-	-	10	0
March	3.0	3.9	2.1	3.6	-	-	-	33	0
April	2.3	3.5	2.0	1.7	-	-	-	16	0
May	1.4	2.2	1.4	1.5	15.2	-	-	47	0
June	1.7	2.0	1.3	1.7	15.2	15.2	-	35	0
July	1.5	3.4	1.6	1.5	15.2	15.2	15.2	36	1
August	3.9	2.5	1.4	1.6	46.1	46.1	46.1	46	4
September	2.6	3.6	1.4	2.0	-	-	-	26	0
October	2.7	2.7	1.3	3.1	-	-	-	11	0
November	2.3	8.5	1.6	2.6	-	-	-	11	0
December	4.1	5.6	2.0	2.1	-	-		14	0
Mean Annual FWC =	2.4	2.9	1.6	1.9	30.8	29.2	25.2	297	5

Mean Annual FWC for all Storm = 2.0

Mean Annual FWC for all CSO = 29.9

Table 3: Calculated Flow-Weighted Mean Monthly and Annual Constituent Concentrations for 2024 (Cont.)

Chloride (mg/L)

<u></u>		Storm Outfa	alls				No. of Sam	ples	
Month	30th Ave	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	CSO
January	638	1283	269	425	-	-	-	12	0
February	611	576	228	515	-	-	-	10	0
March	635	651	347	625	-	-	-	33	0
April	334	283	411	368	-	-	-	16	0
May	79	62	125	141	25	-	-	47	0
June	70	46	92	105	25	25	-	35	0
July	100	54	106	99	25	25	25	36	1
August	65	46	71	88	31	31	31	47	4
September	61	78	86	100	-	-	-	26	0
October	142	120	95	142	-	-	-	11	0
November	219	834	101	211	-	-	-	11	0
December	764	1257	474	691	-	-	<u> </u>	14	0
Mean Annual FWC =	206	209	172	209	28	28	27	298	5

Mean Annual FWC for all Storm = 191.9

Mean Annual FWC for all CSO = 27.7

E. coli (MPN/100 mL)

		Storm Outfa	alls				No. of Samples		
Month	30th Ave	Groat Road	Quesnell	Kennedale	Rat Creek	Highlands	Capilano	Storm	CSO
January	37,669	23,798	5,718	1,128	-	-	-	12	0
February	22,266	2,868	5,474	869	-	-	-	10	0
March	18,815	16,161	9,606	9,803	-	-	-	33	0
April	17,311	22,193	13,042	1,965	-	-	-	16	0
May	13,380	9,431	9,206	4,005	2,330,000	-	-	48	1
June	15,839	9,251	12,467	3,202	1,504,382	1,064,820	-	37	2
July	16,625	10,433	11,340	3,887	1,599,990	1,600,000	1,600,000	38	1
August	174,697	19,538	15,405	6,834	1,573,423	1,570,000	1,570,000	57	4
September	33,223	24,664	8,751	4,312	-	-	-	28	0
October	19,303	3,596	10,275	527	-	-	-	11	0
November	7,717	148,140	5,572	75	-	-	-	11	0
December	34,157	49,631	23,042	1,893	-	-	-	14	0
Mean Annual FWC =	41,054	16,101	11,345	4,390	1,591,297	1,544,759	1,590,332	315	8

Mean Annual FWC for all Storm = 15,890

Mean Annual FWC for all CSO = 1,575,877

FWC (mg/L) = Flow weighted concentration = 1000 x Constituent load (kg) / Volume (m3) per site for a monthly or annual period Concentrations for unsampled flows were estimated or interpolated

No. of samples includes wet-weather and baseflow sampling. QA/QC samples not included in totals.

^{&#}x27;-' - Concentration could not be calculated due to no flow present.

Table 4: Constituent Loads for 2024

Total Suspended Solids (kg)

	Storm Outfalls					Creeks						CSO Outfalls					
_	30th Ave	Groat Rd.	Quesnell	Kennedale	Unmonitored	Blackmud	Gold Bar	Horsehills	Mill	Wedgewood	Whitemud		Rat Creek	Highlands	Capilano	Remaining	Total
Month	Storm	Storm	Storm	Storm	Storm	Creek	Creek	Creek	Creek	Creek	Creek	Total Storm	CSO	CSO	CSO	CSO	CSO
January	25,599	44,379	39,743	1,177	113,613	44,996	7,654	18,445	25,439	5,659	39,597	366,301	0	0	0	0	0
February	6,595	172	4,908	1,702	9,120	3,605	613	1,475	1,806	453	3,167	33,615	0	0	0	0	0
March	40,419	70,625	74,348	19,058	189,492	74,949	12,750	30,724	60,631	9,425	65,956	648,378	0	0	0	0	0
April	48,914	64,043	110,948	22,054	216,731	85,755	14,588	35,154	98,222	10,784	75,466	782,660	0	0	0	0	0
May	130,111	112,650	201,386	66,719	876,463	420,797	53,870	129,812	464,192	45,875	370,309	2,872,183	2,115	0	0	715	2,830
June	76,774	97,901	153,360	123,371	759,460	238,074	61,794	148,908	219,597	26,577	209,510	2,115,325	12,755	5,668	0	7,249	25,673
July	30,534	31,113	57,233	25,331	284,451	112,476	20,627	49,706	87,134	11,647	98,981	809,231	11,096	8,225	2,823	10,013	32,157
August	34,495	73,833	93,539	37,576	503,963	159,904	28,845	69,510	95,213	24,262	140,718	1,261,858	11,927	5,962	1,003	6,546	25,439
September	41,915	23,246	44,508	12,503	183,991	78,288	12,402	29,885	51,803	9,539	68,895	556,973	0	0	0	70	70
October	9,261	505	3,327	1,836	25,662	12,064	1,697	4,090	36	1,270	10,617	70,365	0	0	0	0	0
November	7,442	4,585	17,144	2,004	24,038	9,515	1,619	3,900	3,654	1,197	8,373	83,471	0	0	0	0	0
December	41,026	15,658	56,039	7,093	98,268	38,922	6,621	15,956	48,398	4,895	34,253	367,128	0	0	0	0	0
Total	493,084	538,711	856,482	320,423	3,285,250	1,279,344	223,081	537,564	1,156,125	151,581	1,125,843	9,967,488	37,893	19,856	3,825	24,593	86,168
														Total Load	I From Storn	n and CSO = 1	0,053,655

Biochemical Oxygen Demand (kg)

	Storm Outfalls							Cree	eks					C	SO Outfall	s	
_	30th Ave	Groat Rd.	Quesnell	Kennedale	Unmonitored	Blackmud	Gold Bar	Horsehills	Mill	Wedgewood	Whitemud		Rat Creek	Highlands	Capilano	Remaining	Total
Month	Storm	Storm	Storm	Storm	Storm	Creek	Creek	Creek	Creek	Creek	Creek	Total Storm	CSO	CSO	CSO	CSO	CSO
January	4,736	4,281	5,924	742	14,787	5,854	996	2,400	3,285	736	5,152	48,891	0	0	0	0	0
February	1,531	47	1,965	826	2,740	1,083	184	443	531	136	951	10,438	0	0	0	0	0
March	5,691	7,870	13,846	8,249	28,994	11,460	1,949	4,698	11,649	1,441	10,085	105,930	0	0	0	0	0
April	4,579	2,920	15,583	3,465	20,240	8,000	1,361	3,280	12,015	1,006	7,040	79,488	0	0	0	0	0
May	6,839	7,725	15,691	12,906	65,520	28,752	4,321	10,412	33,969	3,164	25,302	214,601	379	0	0	128	507
June	10,288	10,165	13,206	14,080	77,833	25,295	6,055	14,590	24,510	2,896	22,260	221,176	2,332	1,072	0	1,353	4,757
July	9,097	14,796	12,814	6,398	85,655	31,519	6,493	15,645	21,666	3,674	27,738	235,496	3,676	2,725	935	3,318	10,654
August	12,563	6,748	11,039	9,457	63,031	20,614	3,729	8,986	13,637	2,870	18,140	170,815	4,521	2,260	380	2,481	9,642
September	5,627	2,911	5,587	2,985	25,029	11,129	1,626	3,917	7,296	1,305	9,794	77,206	0	0	0	26	26
October	4,378	93	10,808	998	31,777	14,520	2,121	5,112	42	1,578	12,778	84,205	0	0	0	0	0
November	3,005	609	3,495	1,474	5,440	2,153	366	883	1,086	271	1,895	20,676	0	0	0	0	0
December	9,517	2,361	6,135	1,998	15,305	6,062	1,031	2,485	7,862	762	5,334	58,852	0	0	0	0	0_
Total	77,851	60,526	116,091	63,578	436,350	166,441	30,232	72,850	137,547	19,839	146,469	1,327,775	10,908	6,057	1,315	7,306	25,586

Total Phophorus (kg)

										J/							
	Storm Outfalls						Creeks						C	SO Outfall	S		
-	30th Ave	Groat Rd.	Quesnell	Kennedale	Unmonitored	Blackmud	Gold Bar	Horsehills	Mill	Wedgewood	Whitemud		Rat Creek	Highlands	Capilano	Remaining	Total
Month	Storm	Storm	Storm	Storm	Storm	Creek	Creek	Creek	Creek	Creek	Creek	Total Storm	CSO	CSO	CSO	CSO	CSO
January	170	102	240	64	457	181	31	74	101	23	159	1,601	0	0	0	0	0
February	98	2	147	82	191	76	13	31	36	9	66	752	0	0	0	0	0
March	311	352	455	552	1,282	507	86	208	481	64	446	4,744	0	0	0	0	0
April	173	173	407	97	680	269	46	110	366	34	237	2,591	0	0	0	0	0
May	323	295	1,733	305	4,604	1,970	301	725	2,653	230	1,734	14,874	6	0	0	2	8
June	317	273	546	385	2,564	838	201	485	872	93	738	7,313	31	11	0	16	57
July	176	208	390	221	1,966	744	155	374	654	79	655	5,622	90	67	23	81	262
August	446	222	515	322	2,618	896	159	383	600	123	789	7,074	375	187	31	205	798
September	220	131	323	168	1,311	555	85	205	357	69	489	3,913	0	0	0	2	2
October	98	12	194	99	660	295	44	107	1	33	260	1,802	0	0	0	0	0
November	97	32	225	56	267	106	18	43	50	13	93	1,000	0	0	0	0	0
December	303	159	267	79	615	244	41	100	317	31	214	2,370	0	0	0	0	0
Total	2,732	1,960	5,441	2,430	17,216	6,681	1,181	2,846	6,488	800	5,879	53,654	502	265	54	306	1,127
														Total Load	d From Storn	n and CSO = 5	54,781

Total Load From Storm and CSO = 1,353,361

Table 4: Constituent Loads for 2024 (Cont.)

Nitrite + Nitrate	(kg)
-------------------	------

		S	torm Outfa	lls		Creeks							C	SO Outfall	ls		
_	30th Ave	Groat Rd.	Quesnell	Kennedale	Unmonitored	Blackmud	Gold Bar	Horsehills	Mill	Wedgewood	Whitemud		Rat Creek	Highlands	Capilano	Remaining	Total
Month	Storm	Storm	Storm	Storm	Storm	Creek	Creek	Creek	Creek	Creek	Creek	Total Storm	CSO	CSO	CSO	CSO	CSO
January	803	108	774	359	1,335	527	90	216	294	66	464	5,037	0	0	0	0	0
February	490	13	679	317	900	356	61	145	167	45	312	3,484	0	0	0	0	0
March	460	140	715	435	1,256	496	84	203	606	62	437	4,895	0	0	0	0	0
April	539	116	676	234	1,080	427	73	175	767	54	376	4,515	0	0	0	0	0
May	859	416	1,346	745	5,637	2,404	372	897	3,122	269	2,116	18,183	0	0	0	0	0
June	1,107	276	1,457	1,186	7,107	2,344	566	1,365	2,803	254	2,063	20,529	2	1	0	1	4
July	1,103	134	1,270	611	6,796	2,610	561	1,352	3,089	255	2,297	20,077	6	4	1	5	17
August	660	296	1,459	941	6,603	2,339	426	1,027	1,621	318	2,059	17,748	2	1	0	1	5
September	520	155	1,151	457	4,030	1,637	265	638	1,072	210	1,441	11,576	0	0	0	0	0
October	408	11	710	216	2,418	1,073	163	394	3	121	944	6,461	0	0	0	0	0
November	555	18	588	262	836	331	56	136	183	42	291	3,298	0	0	0	0	0
December	375	112	538	367	886	351	60	144	482	44	309	3,666	0	0	0	0	0
Total	7,878	1,796	11,363	6,129	38,883	14,896	2,777	6,691	14,209	1,739	13,108	119,470	11	6	2	8	26

Total Load From Storm and CSO = 119,496

AIIIIIIOI	IIa	MILL	ogen	(kg)
	_			

_		S	torm Outfa	lls		<u>Creeks</u>							CSO Outfalls				
-	30th Ave	Groat Rd.	Quesnell	Kennedale	Unmonitored	Blackmud	Gold Bar	Horsehills	Mill	Wedgewood	Whitemud	· <u></u>	Rat Creek	Highlands	Capilano	Remaining	Total
Month	Storm	Storm	Storm	Storm	Storm	Creek	Creek	Creek	Creek	Creek	Creek	Total Storm	CSO	CSO	CSO	CSO	CSO
January	310	137	350	160	720	285	48	117	162	36	251	2,575	0	0	0	0	0
February	255	17	383	458	534	211	36	86	95	26	185	2,286	0	0	0	0	0
March	318	289	692	935	1,436	568	97	233	615	71	499	5,754	0	0	0	0	0
April	244	109	659	198	818	323	55	133	579	41	285	3,443	0	0	0	0	0
May	352	352	639	305	2,736	1,173	177	427	1,413	130	1,032	8,735	7	0	0	2	9
June	279	155	462	316	2,088	693	165	398	764	75	610	6,006	38	14	0	19	71
July	181	130	382	249	1,983	715	164	394	623	82	629	5,530	112	83	28	101	325
August	1,157	229	517	430	2,977	983	182	438	629	143	865	8,549	248	124	21	147	540
September	334	146	353	243	1,541	661	99	238	409	82	582	4,687	0	0	0	4	4
October	247	4	259	259	1,154	504	78	189	2	58	444	3,198	0	0	0	0	0
November	162	26	321	217	394	156	27	64	71	20	137	1,594	0	0	0	0	0
December	191	119	472	237	669	265	45	109	366	33	233	2,740	0	0	0	0	0
Total	4,030	1,712	5,488	4,007	17,051	6,536	1,172	2,825	5,728	797	5,751	55,097	406	221	49	273	949
														Total Load	d From Storr	n and CSO = 5	56,047

Total Kjeldahl Nitrogen (kg)

										\ J/							
		S	torm Outfa	ılls		Creeks							CSO Outfalls				
_	30th Ave	Groat Rd.	Quesnell	Kennedale	Unmonitored	Blackmud	Gold Bar	Horsehills	Mill	Wedgewood	Whitemud		Rat Creek	Highlands	Capilano	Remaining	Total
Month	Storm	Storm	Storm	Storm	Storm	Creek	Creek	Creek	Creek	Creek	Creek	Total Storm	CSO	CSO	CSO	CSO	CSO
January	728	478	1,006	396	2,075	821	140	337	463	103	723	7,270	0	0	0	0	0
February	466	25	694	663	957	378	64	155	174	47	332	3,956	0	0	0	0	0
March	1,261	1,196	2,174	2,469	5,189	2,051	349	841	2,064	258	1,805	19,658	0	0	0	0	0
April	930	651	2,025	585	3,053	1,207	205	495	1,880	152	1,062	12,244	0	0	0	0	0
May	1,466	1,438	2,791	2,009	12,033	5,396	769	1,853	6,488	594	4,748	39,584	32	0	0	11	43
June	1,616	1,156	2,538	2,610	13,049	4,210	1,042	2,510	4,428	467	3,705	37,332	174	63	0	87	324
July	1,004	976	1,838	1,305	9,861	3,652	781	1,881	3,134	404	3,214	28,050	508	377	129	458	1,473
August	3,143	1,271	2,574	2,165	14,420	4,886	864	2,083	3,215	675	4,300	39,596	2,216	1,108	186	1,208	4,719
September	1,378	727	1,621	970	6,805	2,946	440	1,061	1,889	358	2,593	20,788	0	0	0	13	13
October	549	26	933	613	3,346	1,511	225	542	4	167	1,330	9,246	0	0	0	0	0
November	386	142	852	406	1,072	424	72	174	201	53	373	4,156	0	0	0	0	0
December	924	493	1,327	571	2,386	945	161	387	1,233	119	832	9,378	0	0	0	0	0
Total	13,852	8,578	20,375	14,762	74,246	28,428	5,112	12,318	25,174	3,399	25,016	231,259	2,931	1,547	316	1,777	6,571

Total Load From Storm and CSO = 237,830

Table 4: (Constituent	Loads for	2024 ((Cont.)
------------	-------------	-----------	--------	---------

								Chlori	de (kg)								
		S	torm Outfal	lls				Cre	eks					C	SO Outfall	S	
Month	30th Ave	Groat Rd.	Quesnell	Kennedale	Unmonitored	Blackmud	Gold Bar	Horsehills	Mill	Wedgewood	Whitemud	Total Storm	Rat Creek	Highlands	Capilano	Remaining	Total
January	147,688	106,764	142,454	60,553	386,439	152,958	26,020	62,702	86,481	19,236	134,606	1,325,901	0	0	0	0	0
February	106,454	8,827	122,603	114,227	189,338	74,849	12,733	30,577	31,900	9,380	65,641	766,531	0	0	0	0	0
March	268,761	198,179	362,745	432,048	907,285	358,743	61,027	147,060	365,119	45,115	315,701	3,461,783	0	0	0	0	0
April	135,693	52,433	411,802	128,805	463,822	183,184	31,162	75,093	355,036	23,037	161,206	2,021,273	0	0	0	0	0
May	83,414	41,502	243,552	192,491	870,589	363,261	57,463	138,472	531,778	41,962	319,677	2,884,161	52	0	0	18	70
June	65,171	26,852	174,574	157,004	669,230	223,452	52,261	125,934	274,673	24,393	196,642	1,990,187	281	101	0	141	524
July	67,991	15,486	123,641	89,236	572,091	217,930	47,283	113,940	246,143	21,693	191,782	1,707,215	822	609	209	742	2,383
August	52,808	22,759	131,493	118,083	592,361	210,510	38,442	92,636	150,992	28,011	185,253	1,623,347	1,497	748	126	855	3,226
September	31,970	15,835	96,792	49,192	330,902	132,721	21,754	52,422	86,404	17,245	116,797	952,034	0	0	0	15	15
October	28,934	1,165	70,561	27,966	220,965	98,003	14,949	36,024	286	11,068	86,245	596,166	0	0	0	0	0
November	36,851	13,872	55,107	33,398	80,932	32,037	5,450	13,133	15,974	4,029	28,193	318,976	0	0	0	0	0
December	173,716	110,506	310,320	191,885	536,534	212,495	36,149	87,108	250,549	26,723	187,000	2,122,984	0	0	0	0	0
Total	1,199,452	614,180	2,245,644	1,594,887	5,820,488	2,260,143	404,695	975,102	2,395,334	271,891	1,988,743	19,770,558	2,653	1,458	335	1,771	6,217

E. coli (MPN x 10¹²)

		S	torm Outfa	lls		Creeks							CSO Outfalls				
_	30th Ave	Groat Rd.	Quesnell	Kennedale	Unmonitored	Blackmud	Gold Bar	Horsehills	Mill	Wedgewood	Whitemud		Rat Creek	Highlands	Capilano	Remaining	Total
Month	Storm	Storm	Storm	Storm	Storm	Creek	Creek	Creek	Creek	Creek	Creek	Total Storm	CSO	CSO	CSO	CSO	CSO
January	87	20	30	2	117	46	8	19	27	6	41	402	0	0	0	0	0
February	39	0	29	2	35	14	2	6	9	2	12	150	0	0	0	0	0
March	80	49	100	68	266	105	18	43	104	13	93	939	0	0	0	0	0
April	70	41	131	7	202	80	14	33	119	10	70	778	0	0	0	0	0
May	141	63	180	54	822	360	54	129	451	40	317	2,610	49	0	0	17	66
June	147	54	237	48	980	320	78	187	355	35	281	2,723	172	44	0	72	288
July	113	30	132	35	653	245	51	122	235	27	216	1,858	535	396	136	483	1,550
August	1,411	98	285	92	1,367	478	85	206	315	65	421	4,822	757	377	63	433	1,631
September	174	50	99	21	526	232	34	83	148	27	205	1,601	0	0	0	15	15
October	39	0	77	1	227	110	15	36	0	11	97	613	0	0	0	0	0
November	13	25	30	0	53	21	4	9	9	3	19	185	0	0	0	0	0
December	78	44	151	5	233	92	16	38	106	12	81	856	0	0	0	0	0
Total	2,391	474	1,482	335	5,482	2,103	377	909	1,880	251	1,851	17,535	1,513	818	200	1,020	3,549

Total Load From Storm and CSO = 21,085

Total Load From Storm and CSO = 19,776,776

Table 5: 2024 Rat Creek CSO Concentration Statistics

			TSS			BOD			TP			E. coli	
	Days with	Mean	Maximum	Minimum	Mean	Maximum	Minimum	Mean	Maximum	Minimum	Geo Mean	Maximum	Minimum
Month	CSO Flows	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(M	IPN/100 m	L)
January	0	-	-	-	-	-	-	•		-	-	-	_
February	0	-	-	-	-	-	-	•		-	-	=	-
March	0	-	-	-	-	-	-			-	-	-	-
April	0	-	-	-	-	-	-		-	-	-	-	-
May	1	1000.0	1000.0	1000.0	179.0	179.0	179.0	2.7	2.7	2.7	2,330,000	2,330,000	2,330,000
June	2	1190.0	1380.0	1000.0	220.0	261.0	179.0	2.7	2.7	2.7	1,342,386	1,700,000	1,060,000
July	2	290.0	332.0	248.0	102.0	110.0	94.0	5.2	7.8	2.7	1,584,929	1,600,000	1,570,000
August	5	248.0	248.0	248.0	94.0	94.0	94.0	7.6	8.5	6.2	2,763,871	5,310,000	1,570,000
September	0	-	-	-	-	-	-			-	-	-	-
October	0	-	-	-	-	-	-			-	-	-	-
November	0	-	_	-	-	-	-			-	-	-	-
December	0	-	-	-	-	-	-	-		-	=	-	<u> </u>

			NH_3			NO ₃ +NO ₂			TKN			Chloride	
	Days with	Mean	Maximum	Minimum	Mean	Maximum	Minimum	Mean	Maximum	Minimum	Mean	Maximum	Minimum
Month	CSO Flows	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
January	0	-	· -	-	-	· -	-	•		-	-	-	-
February	0	-	· -	-	-	· -	-	•		-	-	-	-
March	0	-		-	-	-	=			-	-	-	-
April	0	-		-	-	-	-			-	-	-	-
May	1	3.4	3.4	3.4	0.2	0.2	0.2	15.2	2 15.2	15.2	24.6	24.6	24.6
June	2	3.4	3.4	3.4	0.2	0.2	0.2	15.2	2 15.2	15.2	24.6	24.6	24.6
July	2	4.3	5.2	3.4	0.1	0.2	0.1	30.7	46.1	15.2	27.85	31.1	24.6
August	5	11.6	20.2	5.2	0.0	0.1	0.0	41.6	46.1	33.5	46.88	79.6	31.1
September	0	-		_	-		-			-	-	-	-
October	0	-		-	-	-	-			-	-	-	-
November	0	-		-	-		-			-	-	-	-
December	0	-	-	-	-	-	-			-	-	-	

Note: Number of samples might not equal to number of CSO events due to sampler malfunction and extended sampling event.

TABLE 6: List of Certified Wastewater Collection System Operators

Certified Wastewater Collection System Operators per Level of WWC Certification:

- (1) Operators Level IV WWC Certified
- (9) Operators Level III WWC Certified
- (49) Operators Level II WWC Certified(49) Operators Level I WWC Certified

Name	Title	WWC Certification Level
Fechner, Frank	Operations Engineer	IV
Bertin, Wendy	Engineering Technologist	III
Charrupi, Carlos	Maintenance Repairman I	III
Gunderson, John	Engineering Technologist	III
Hao, Yufu (Owen)	Industrial Wastewater Inspection Coordinator	III
L'Heureux, Robin	Engineering Technologist	III
Lukenbill, Durward (Dylan)	Tradesman (Millwright 2)	III
McConnell, Peter	Drainage System Network Operator	III
Murphy, Steven	Drainage System Combo Operator	III
Powell, Ryan	Tradesman (Millwright 2)	III
Ambrosio, Jeffrey	Sewer Substructure Inspector	II
Aniskou, Evgeni	Engineering Technologist	II
Bishop, Shawn	Labour Foreman 3	II
Bourgeois, Marshall	Tradesman (Millwright)	II
Bronca, Robert	Labour Foreman 3	II
Brownoff, Nicholas	Tradesman (Millwright 2)	II
Coburn, Arthur	Drainage System Troubleman	II
Cuglietta, Carmine	Labour Foreman 3	II
Dowds, Alexander	Drainage System Combo Operator	II
Ewing, Nicole	Engineering Technologist	II
Fehr, Brittany	Engineering Technologist	II
Ferenac, Nikola	Labour Foreman 3	II
Fraser, Gordon	Labourer 2	II
Gawreletz, Kevin	Drainage System Troubleman	II
Goodine, John	Tradesman (Millwright 2)	II
Goonewardane, Anton	Equipment Operator 3	II
Guidoccio, Natalino	Drainage System Serviceman	II
Guidoccio, Nicholas	Labourer 3	II
Hammond, Richard	Drainage System Combo Operator	II
Hogan, Alex	Industrial Wastewater Technologist	II
Lahaie, Ryan	Tradesman (Millwright)	II

Ledl, Ryan Industrial Wastewater Investigator Lirazan, Warren Drainage System Combo Operator Macrury, Robert Drainage System Troubleman Manao, Manuel Sewer Substructure Inspector McKay, Brandy Engineering Technologist Miller, Wade Tradesman (Millwright 2)	
Macrury, Robert Drainage System Troubleman Manao, Manuel Sewer Substructure Inspector McKay, Brandy Engineering Technologist	II II
Manao, Manuel Sewer Substructure Inspector McKay, Brandy Engineering Technologist	II
McKay, Brandy Engineering Technologist	
	II
Miller, Wade Tradesman (Millwright 2)	
` ' '	II
Montague, Thomas (lan) Labour Foreman 3	II
Nelson, Tim Manager, Environmental Investigators	II
Osuch, Oskar Maintenance Repairman I	II
Persaud, Shawna Equipment Operator 3	II
Pinder, Cristan Industrial Wastewater Investigator	II
Purcell, Graham Drainage System MTV Operator	II
Rivard, Shaune Drainage System Troubleman	II
Samarasinghe, Kalutota Labourer 2	II
Santrau, Alex Tradesman (Millwright)	II
Schlacht, Shawn Labour Foreman 3	II
Sedurante, Benjamin Drainage System Troubleman	II
Sigstad, Sheridan Lane Tradesman (Millwright 2)	II
Shang, Michael Drainage System Serviceman	II
Slonetzky, Tyler Sewer Substructure Inspector	II
Soni, Rohit Planner (FCF Maintenance)	II
Sorenson, Melvin Labour Foreman 1	П
To, Alan Labourer 2	II
Trahan, Tessa Environmental Specialist	II
Underhay, Dominic Drainage System Combo Operator	II
Webster, Kenneth Labour Foreman 3	П
Yang, Guang Drainage System Combo Operator	II
Aspden, Kate Engineering Technologist	l
Bandaralage, Upul Pe Drainage System Combo Operator	1
Banister, Daniel Industrial Wastewater Investigator	I
Barthel, Scott Labourer 3	l l
Bennet, Jay Drainage System Serviceman	l
Bolz, Melissa Labourer 2	I
Bracha, Terra Maintenance Repairman I	I
Braunig, Alex Drainage System MTV Operator	I

Buck, Kerri	Engineering Technologist	I
Burk, Bradley	Labourer 3	I
Burns, Russel	Drainage System Combo Operator	I
Buhay, Christopher	Labourer 2	I
Byrd, Jeff	Labourer 3	I
Byrne, Philip	Maintenance Repairman I	I
Campbell, Brent	Labour Foreman 1	I
Casella, Carmen	Labour Foreman 3	I
Dilts, Scott	Drainage System Combo Operator	I
Divino, Patrick	Drainage System Serviceman	I
Draghici, Courtney	Drainage System Combo Operator	I
Girhiny, Leah	Engineering Technologist	I
Hay, Luke	Labourer 3	I
Hyshka, Anthony	Drainage System Combo Operator	I
Khan, Murtaza	Engineering Technologist	I
Knapton, Dayna	Drainage System MTV Operator	I
Liao, Leslie	Tradesman (Millwright)	I
Lynch, Jacob	Sewer Substructure Inspector	I
Manuel, Jose	Sewer Substructure Inspector	I
Masson, Sheldon	Drainage System Combo Operator	I
McCulloch, Mitch	Labourer 3	I
McHale, Ken	Drainage System Combo Operator	I
Nakpangi, Valene	Engineering Technologist	I
Nikapitiyawithana, Amith	Labourer 3	I
Pawelec, Michal	Labourer 2	I
Rahal, Osman	Engineering Technologist	I
Rathwell, Bradley	Industrial Wastewater Investigator	I
Rosell, Brandon	Maintenance Repairman 1	I
Runco, Frank	Drainage System Combo Operator	I
Ryley, Paul	Maintenance Repairman 1	I
Sandhu, Sangram	Labourer 3	I
Sheppard, Cody	Tradesman (Millwright)	I
Silva, Daniel	Labourer 3	l
Smith, Derek	Labourer 3	I
Sterparn, Andrew	Labour Foreman 1	ı
- 101 p - 111 p		

2024 Annual Wastewater Collection System Report

Trudel, Tyler	Labourer 2	I
Valentini, Marco	Maintenance Repairman 1	1
Weiss, Dallas	Labourer 3	1
Wildeboar, Christopher	Labourer 3	I
Wolfe, Brent	Drainage System Combo Operator	I

Note: The above table is the list of certified wastewater collection system operators as of December 31, 2024.

TABLE 7: 2024 Annual Product Usage at Pump Stations

The Biomaxx Canada OXYN8 solution is used for odor control at sanitary pump stations.

Pump Station	Month	Product	Total Addition (L)
PW227 Chappelle Garden	January	Biomaxx Canada OXYN8	3411
PW233 Edgemont II	January	Biomaxx Canada OXYN8	2965
PW227 Chappelle Garden	February	Biomaxx Canada OXYN8	3649
PW233 Edgemont II	February	Biomaxx Canada OXYN8	1373
PW227 Chappelle Garden	March	Biomaxx Canada OXYN8	4944
PW233 Edgemont II	March	Biomaxx Canada OXYN8	2158
PW233 Edgemont II	April	Biomaxx Canada OXYN8	2032

Total Usage - 2024 (L): 20,530

TABLE 8: 2024 Annual Usage of Reward® Herbicide

Date of Application	n Stormwater Management Facility	
28-May-24	Ambleside # 4 (3604 Allan Drive SW)	11
11-Jun-24	Paisley # 1 (3040 Paisley Green SW)	26
20-Jun-24	Blackmud Creek # 1 (9101 Blackmud Creek Crescent SW)	8
28-Jun-24	Uplands # 2 (27 Ave and 199 St NW)	8
09-Jul-24	Ambleside # 5 (1264 AINSLIE WAY SW)	15
15-Jul-24	Andorra # 1 (16922 93 St NW)	15
17-Jul-24	Belle River # 1 (8728 160 Ave NE)	8
2-Aug-24	Windermere # 11 (738 Windermere Wynd NW)	15

Total Number of Applications: Total Usage (L):

106

TABLE 9: 2024 Usage of Bright Dye

The use of Bright Dye in the **Field Operations** section is related to the identification of cross-connections in the collection system. The **Monitoring & Compliance** usage supports enforcement activities associated with Drainage By-law 19627 (EPCOR) and Drainage By-Law 18093 (City of Edmonton) and investigations of industrial and commercial customers.

Date Tested	Location of Test	Department / Section	Tests per Location	Bright Dye Usage (ml)
04-Jan-24	15202-77 Avenue NW	Monitoring & Compliance	1	75
04-Jan-24	10982-141 Street NW	Monitoring & Compliance	1	25
04-Jan-24	10977-139 Street NW	Monitoring & Compliance	1	50
04-Jan-24	10990-138 Street NW	Monitoring & Compliance	1	50
04-Jan-24	10986-138 Street NW	Monitoring & Compliance	1	50
04-Jan-24	10833-140 Street NW	Monitoring & Compliance	1	75
04-Jan-24	10837-140 Street NW	Monitoring & Compliance	1	75
05-Jan-24	13904-110 Avenue NW	Monitoring & Compliance	1	50
05-Jan-24	10912-141 Street NW	Monitoring & Compliance	1	25
05-Jan-24	10907-141 Street NW	Monitoring & Compliance	1	25
05-Jan-24	10911-141 Street NW	Monitoring & Compliance	1	50
05-Jan-24	10916-141 Street NW	Monitoring & Compliance	1	50
05-Jan-24	10915-141 Street NW	Monitoring & Compliance	1	50
05-Jan-24	10904-141 Street NW	Monitoring & Compliance	1	50
05-Jan-24	10924-141 Street NW	Monitoring & Compliance	1	25
05-Jan-24	10932-141 Street NW	Monitoring & Compliance	1	25
18-Jan-24	16136-110A Avenue NW	Monitoring & Compliance	1	50
18-Jan-24	16132-110A Avenue NW	Monitoring & Compliance	1	50
19-Jan-24	16142-110A Avenue NW	Monitoring & Compliance	1	50
19-Jan-24	16121-110A Avenue NW	Monitoring & Compliance	1	50
19-Jan-24	16125-110A Avenue NW	Monitoring & Compliance	1	50
22-Jan-24	13932-109 Avenue NW	Monitoring & Compliance	1	50
22-Jan-24	10832-140 Street NW	Monitoring & Compliance	1	50
22-Jan-24	13924-109 Avenue NW	Monitoring & Compliance	1	50
22-Jan-24	10840-140 Street NW	Monitoring & Compliance	1	75
22-Jan-24	13859-110A Avenue NW	Monitoring & Compliance	1	50
22-Jan-24	10839-140 Street NW	Monitoring & Compliance	1	75
23-Jan-24	16146-110A Avenue NW	Monitoring & Compliance	1	50
23-Jan-24	16131-110A Avenue NW	Monitoring & Compliance	1	50
23-Jan-24	13924-110 Avenue NW	Monitoring & Compliance	1	50
23-Jan-24	10981-139 Street NW	Monitoring & Compliance	1	50
23-Jan-24	13908-110 Avenue NW	Monitoring & Compliance	1	50
23-Jan-24	13907-110 Avenue NW	Monitoring & Compliance	1	50
23-Jan-24	13912-110 Avenue NW	Monitoring & Compliance	1	50
23-Jan-24	13915-110 Avenue NW	Monitoring & Compliance	1	50

			_	
23-Jan-24	13911-110 Avenue NW	Monitoring & Compliance	1	50
23-Jan-24	13932-110 Avenue NW	Monitoring & Compliance	1	50
24-Jan-24	13920-110 Avenue NW	Monitoring & Compliance	1	50
24-Jan-24	69-Westbrook Drive NW	Monitoring & Compliance	1	50
24-Jan-24	73-Westbrook Drive NW	Monitoring & Compliance	1	75
25-Jan-24	6719-39 Avenue NW	Monitoring & Compliance	1	50
25-Jan-24	6724-39 Avenue NW	Monitoring & Compliance	1	50
25-Jan-24	12163-68 Street NW	Monitoring & Compliance	1	50
25-Jan-24	10835-140 Street NW	Monitoring & Compliance	1	75
29-Jan-24	13916-110 Avenue NW	Monitoring & Compliance	1	25
29-Jan-24	13928-110 Avenue NW	Monitoring & Compliance	1	25
30-Jan-24	3908-67 Street NW	Monitoring & Compliance	1	50
30-Jan-24	6727-39 Avenue NW	Monitoring & Compliance	1	50
06-Feb-24	4505-137 Avenue NW	Monitoring & Compliance	1	25
09-Feb-24	1520-161 Street SW	Monitoring & Compliance	1	50
09-Feb-24	1511-161 Street SW	Monitoring & Compliance	1	25
09-Feb-24	60-Westbrook Drive NW	Monitoring & Compliance	1	50
09-Feb-24	71-Westbrook Drive NW	Monitoring & Compliance	1	25
09-Feb-24	1519-161 Street SW	Monitoring & Compliance	1	50
09-Feb-24	1523 -161 Street SW	Monitoring & Compliance	1	25
11-Feb-24	4217-135 Avenue NW	Monitoring & Compliance	5	250
12-Feb-24	6707-39 Avenue NW	Monitoring & Compliance	1	50
12-Feb-24	6712-39 Avenue NW	Monitoring & Compliance	1	50
12-Feb-24	6715-39 Avenue NW	Monitoring & Compliance	1	75
14-Feb-24	6720-39 Avenue NW	Monitoring & Compliance	1	50
14-Feb-24	6723-39 Avenue NW	Monitoring & Compliance	1	50
20-Feb-24	17335-105 Street NW	Monitoring & Compliance	1	50
20-Feb-24	17315-105 Street NW	Monitoring & Compliance	1	50
20-Feb-24	17308-105 Street NW	Monitoring & Compliance	1	50
23-Feb-24	4217-135 Avenue NW	Monitoring & Compliance	6	325
24-Feb-24	6711-39 Avenue NW	Monitoring & Compliance	1	50
24-Feb-24	6716-39 Avenue NW	Monitoring & Compliance	1	50
08-Mar-24	10985-138 Street NW	Monitoring & Compliance	1	25
11-Mar-24	4305-134 Avenue NW	Monitoring & Compliance	1	120
20-Mar-24	10044-90 Avenue NW	Monitoring & Compliance	1	75
20-Mar-24	10046-90 Avenue NW	Monitoring & Compliance	1	50
20-Mar-24	10058-90 Avenue NW	Monitoring & Compliance	1	50
20-Mar-24	10062-90 Avenue NW	Monitoring & Compliance	1	50
20-Mar-24	10066-90 Avenue NW	Monitoring & Compliance	1	50
20-Mar-24	10059-90 Avenue NW	Monitoring & Compliance	1	50

OF Man 24 4000F 420 Otreat NW Manitoring 9 Compliance	
25-Mar-24 10965-138 Street NW Monitoring & Compliance 1	25
26-Mar-24 4106-134A Avenue NW Monitoring & Compliance 1	30
26-Mar-24 13416-41 Street NW Monitoring & Compliance 1	25
26-Mar-24 4110-134A Avenue NW Monitoring & Compliance 1	75
26-Mar-24 4114-134A Avenue NW Monitoring & Compliance 1	25
26-Mar-24 13431-41 Street NW Monitoring & Compliance 1	75
26-Mar-24 4117-134A Avenue NW Monitoring & Compliance 1	50
26-Mar-24 4113-134A Avenue NW Monitoring & Compliance 1	50
02-Apr-24 1060-James Crescent NW Monitoring & Compliance 1	50
04-Apr-24 10981-138 Street NW Monitoring & Compliance 1	50
04-Apr-24 10966-138 Street NW Monitoring & Compliance 1	50
04-Apr-24 10969-138 Street NW Monitoring & Compliance 1	25
10-Apr-24 10970-138 Street NW Monitoring & Compliance 1	50
10-Apr-24 13880-110A Avenue NW Monitoring & Compliance 1	50
11-Apr-24 10973-138 Street NW Monitoring & Compliance 1	50
12-Apr-24 10978-138 Street NW Monitoring & Compliance 1	50
12-Apr-24 10982-138 Street NW Monitoring & Compliance 1	25
12-Apr-24 10977-138 Street NW Monitoring & Compliance 1	50
23-Apr-24 15202-77 Avenue NW Monitoring & Compliance 1	25
26-Apr-24 10056-90 Avenue NW Monitoring & Compliance 1	125
03-May-24 7310-154A Street NW Monitoring & Compliance 1	25
14-May-24 10966-138 Street NW Monitoring & Compliance 1	25
14-May-24 12408-40 Avenue NW Monitoring & Compliance 1	50
14-May-24 10056-39 Avenue NW Monitoring & Compliance 1	50
23-May-24 3812-Aspen Drive West NW Monitoring & Compliance 1	50
23-May-24 37-Marlboro Road NW Monitoring & Compliance 1	50
24-May-24 1519-161 Street NW Monitoring & Compliance 1	50
30-May-24 3211-104 Avenue NW Monitoring & Compliance 1	25
30-May-24 13880-110A Avenue NW Monitoring & Compliance 1	25
31-May-24 10839-140 Street NW Monitoring & Compliance 1	25
05-Jun-24 10044-90 Avenue NW Monitoring & Compliance 1	50
05-Jun-24 14724-65 Street NW Monitoring & Compliance 1	25
14-Jun-24 3303-104 Avenue NW Monitoring & Compliance 1	25
18-Jun-24 14724-65 Street NW Monitoring & Compliance 1	25
19-Jun-24 3315-104 Avenue NW Monitoring & Compliance 1	40
21-Jun-24 16132-110A Avenue NW Monitoring & Compliance 1	50
24-Jun-24 14366-Park Drive NW Monitoring & Compliance 1	75
26-Jul-24 4708-Malmo Road NW Monitoring & Compliance 1	50
29-Jul-24 5908-149 Avenue NW Monitoring & Compliance 1	50
01-Aug-24 10907-141 Street NW Monitoring & Compliance 1	25
21-Aug-24 11551-160 Street NW Monitoring & Compliance 1	25

2024 Annual Wastewater Collection System Report

21-Aug-24	11535-160 Street NW	Monitoring & Compliance	1	50
21-Aug-24	11555-160 Street NW	Monitoring & Compliance	1	50
21-Aug-24	11563-160 Street NW	Monitoring & Compliance	1	50
06-Sep-24	15312-Rio Terrace Drive NW	Monitoring & Compliance	1	50
06-Sep-24	9325-51 Avenue NW	Monitoring & Compliance	1	50
12-Sep-24	4251-78 Avenue NW	Monitoring & Compliance	1	25
13-Sep-24	4715-111A Street NW	Monitoring & Compliance	1	50
13-Sep-24	4711-111A Street NW	Monitoring & Compliance	1	50
13-Sep-24	4707-111A Street NW	Monitoring & Compliance	1	50
13-Sep-24	4712-111A Street NW	Monitoring & Compliance	1	50
16-Sep-24	2815-109A Street NW	Monitoring & Compliance	1	100
19-Sep-24	2815-109A Street NW	Monitoring & Compliance	1	25
10-Oct-24	14724-65 Street NW	Monitoring & Compliance	1	25
10-Oct-24	32-Riverside Crescent NW	Monitoring & Compliance	1	75
10-Oct-24	26-Riverside Crescent NW	Monitoring & Compliance	1	75
10-Oct-24	28-Riverside Crescent NW	Monitoring & Compliance	1	50
10-Oct-24	36-Riverside Crescent NW	Monitoring & Compliance	1	50
24-Oct-24	4719-111A Street NW	Monitoring & Compliance	1	75
25-Oct-24	4807-111A Street NW	Monitoring & Compliance	1	25
28-Oct-24	8017A-161 Street NW	Monitoring & Compliance	1	50
28-Oct-24	8017B-161 Street NW	Monitoring & Compliance	1	50
29-Oct-24	15-Riverside Crescent NW	Monitoring & Compliance	1	75
29-Oct-24	34-Riverside Crescent NW	Monitoring & Compliance	1	75
1-Nov-24	13 Riverside Crescent NW	Monitoring & Compliance	1	25
1-Nov-24	30 Riverside Crescent NW	Monitoring & Compliance	1	75
1-Nov-24	3304 - 104 Avenue NW	Monitoring & Compliance	1	75
7-Nov-24	62 Street & Fulton Road NW	Monitoring & Compliance	1	25
18-Nov-24	5908 - 149 Avenue NW	Monitoring & Compliance	1	50
16-Dec-24	1058 James Crescent NW	Monitoring & Compliance	1	25
16-Dec-24	1062 James Crescent NW	Monitoring & Compliance	1	75
16-Dec-24	1064 James Crescent NW	Monitoring & Compliance	1	75

Total Number of Tests: 157 Total Usage – 2024 (mL): 7,690

TABLE 10: 2024 Usage of De-Icing Product (Ice Shield)

Date	Outfall Number	Directly Affected Watercourse	Number of Applications	Total Amount of De-Icing Product Applied (Kg)
05-Jan-24	30	North Sask, River	2	40
05-Jan-24	47	North Sask. River	1	30
05-Jan-24	132	Ramsay Ravine	1	20
05-Jan-24	31	North Sask. River	1	30
08-Jan-24	123	Ramsay Ravine	1	20
08-Jan-24	124	Ramsay Ravine	1	30
08-Jan-24	125	Ramsay Ravine	1	20
08-Jan-24	29	North Sask. River	1	20
09-Jan-24	182	North Sask. River	1	20
09-Jan-24	183	North Sask. River	1	20
09-Jan-24	15	North Sask. River	1	20
15-Jan-24	90	Big Lake	1	40
15-Jan-24	312	North Sask. River	1	20
15-Jan-24	298	North Sask. River	1	30
15-Jan-24	118	North Sask. River	1	40
15-Jan-24	257	Wedgewood Creek	1	40
17-Jan-24	58	North Sask. River	1	40
17-Jan-24	57	North Sask. River	1	40
18-Jan-24	156	Fulton Creek	1	40
18-Jan-24	78	Goldbar Creek	1	40
22-Jan-24	92B	Mill Creek South	1	20
22-Jan-24	249	Mill Creek South	1	40
22-Jan-24	191	Mill Creek South	1	20
22-Jan-24	192	Mill Creek South	1	20
22-Jan-24	91	Mill Creek South	1	40
22-Jan-24	195	Mill Creek South	1	20
24-Jan-24	3	Whitemud Creek	1	40
25-Jan-24	265	Whitemud Creek	1	40
25-Jan-24	263	Blackmud Creek	1	20
25-Jan-24	4	Whitemud Creek	1	120
31-Jan-24	123A	Ramsay Ravine	1	20
01-Feb-24	183	North Sask. River	1	70
02-Feb-24	123A	Ramsay Ravine	1	60

02-Feb-24	124	Ramsay Ravine	1	60
02-Feb-24	123	Ramsay Ravine	1	60
02-Feb-24	31	North Sask. River	1	70
05-Feb-24	29	North Sask. River	1	40
05-Feb-24	30	North Sask. River	1	60
05-Feb-24	182	North Sask. River	1	60
06-Feb-24	118	North Sask. River	1	100
06-Feb-24	298	North Sask. River	1	60
07-Feb-24	119	North Sask. River	1	60
07-Feb-24	21	North Sask. River	1	50
07-Feb-24	15	North Sask. River	1	60
08-Feb-24	257	North Sask. River	1	60
09-Feb-24	77	Goldbar Creek	1	20
13-Feb-24	57	North Sask. River	1	150
16-Feb-24	195	Mill Creek South	1	60
16-Feb-24	191	Mill Creek South	1	60
27-Feb-24	263	Blackmud Creek	1	60
27-Feb-24	265	Blackmud Creek	1	20
28-Feb-24	207	Blackmud Creek	1	20
28-Feb-24	277	Blackmud Creek	1	20
28-Feb-24	313	Blackmud Creek	1	20
01-Mar-24	21	North Sask. River	1	80
01-Mar-24	15	North Sask. River	1	70
04-Mar-24	312	Blackmud Creek	1	80
04-Mar-24	90	North Sask. River	1	60
05-Mar-24	119	North Sask. River	1	60
05-Mar-24	21	North Sask. River	1	80
05-Mar-24	257	North Sask. River	1	60
05-Mar-24	118	North Sask. River	1	80
05-Mar-24	298	North Sask. River	1	60
06-Mar-24	154	Goldbar Creek	1	20
06-Mar-24	65	North Sask. River	1	40
07-Mar-24	21	North Sask. River	1	80
07-Mar-24	126	Ramsay Ravine	1	60
07-Mar-24	138	Ramsay Ravine	1	60
08-Mar-24	123A	Ramsay Ravine	1	60
08-Mar-24	24	Ramsay Ravine	1	100
08-Mar-24	29	North Sask. River	1	40
08-Mar-24	30	North Sask. River	1	40

2024 Annual Wastewater Collection System Report

08-Mar-24	182	North Sask. River	1	60
08-Mar-24	183	North Sask. River	1	60
08-Mar-24	124	Ramsay Ravine	1	60
08-Mar-24	125	Ramsay Ravine	1	60
08-Mar-24	139	Ramsay Ravine	1	60
08-Mar-24	123	Ramsay Ravine	1	40
08-Mar-24	31	North Sask. River	1	60
08-Mar-24	132	Ramsay Ravine	1	60
08-Mar-24	136	Ramsay Ravine	1	50
11-Mar-24	108	North Sask. River	1	40
11-Mar-24	47	North Sask. River	1	80
11-Mar-24	148	North Sask. River	1	100
11-Mar-24	87	North Sask. River	1	40
11-Mar-24	268	North Sask. River	1	80
12-Mar-24	313	Whitemud Creek	1	40
12-Mar-24	46	North Sask. River	1	60
12-Mar-24	109	North Sask. River	1	80
13-Mar-24	207	Blackmud Creek	1	80
13-Mar-24	4	Whitemud Creek	1	80
13-Mar-24	264	Blackmud Creek	1	20
26-Mar-24	52	Mill Creek	1	60
26-Mar-24	153	Goldbar Creek	1	40
26-Mar-24	78	Goldbar Creek	1	60
26-Mar-24	77	Goldbar Creek	1	80
26-Mar-24	156	Fulton Creek	1	80
28-Mar-24	5	Blackmud Creek	1	80
28-Mar-24	4	Whitemud Creek	1	80
28-Mar-24	57	North Sask. River	1	100
28-Mar-24	58	North Sask. River	1	100

Total Number of Applications: 102 Total Usage – 2024 (Kg): 5,320

TABLE 11: 2024 Operational Issues – Wastewater Collection

Date of Occurrence	Location	Incident Description	Туре	AEPA Reference Number
04-Jan-2024	12421-48 Street NW	Untreated wastewater (approx. 1 m3) was released into a storm catch basin (MH580700) from a private RV located at (12421-48 Street NW). EPCOR equipment was mobilized to the site to remove contaminants from the catch basin. The City of Edmonton coordinated the removal of frozen sewage from around the catch basin and nearby alleyway. EPCOR Industrial Wastewater Investigators confirmed that the untreated wastewater was contained within the catch basin and there was no release into the storm collection system. This release was reported to AEPA (Ref# 424222) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	424222
07-Jan-2024	9961-170 Street NW	Untreated wastewater (approx. 7000 L) was released into the storm collection system from a private sanitary line surcharge located at a business complex (9961-170 Street NW). EPCOR equipment was mobilized to the site to clear the blockage in the sanitary line. The property manager contacted a 3rd party vacuum truck to remove contaminants from the impacted storm catch basin and surrounding area. This release was reported to AEPA (Ref# 423628) by the property manager. A written report was issued to AEPA on January 12, 2024.	Reportable- 3 rd Party Release	423628
09-Jan-2024	10820-140 Street NW	Sample results of the wastewater from a storm manhole (MH257508) located near 10820-140 Street NW were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 1,900,000 CFU/100 mL. The original sample was collected on January 4, 2024 by EPCOR Industrial Wastewater Investigators. EPCOR will initiate further investigations into this event to determine the source of the cross-connection at this location. A "Notice to Comply" will be issued to the owners of any properties that have been confirmed to have a cross-connection. The Notices will require that the owners redirect their sanitary wastewater discharge from the storm sewer to the sanitary sewer system. This release was reported to AEPA (Ref# 423666). A written report was issued to AEPA on January 16, 2024	Reportable- 3 rd Party Release	423666
09-Jan-2024	1066-James Crescent NW	Sample results of the wastewater from a storm manhole (MH314580) located near 1066-James Crescent NW were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes applicable to Storm Sewers and Watercourses" for E. coli at 210,000 CFU/100 mL. The original sample was collected on January 3, 2024 by EPCOR Industrial Wastewater Investigators. EPCOR will initiate further investigations into this event to determine the source of the cross-connection at this location. A "Notice to Comply" will be issued to the owners of any properties that have been confirmed to have a cross-connection. The Notices will require that the owners redirect their sanitary wastewater discharge from the storm sewer to the sanitary sewer system. This release was reported to AEPA (Ref#423654). A written report was issued to AEPA on January 16, 2024.	Reportable- 3 rd Party Release	423654
11-Jan-2024	134-Avenue & 41- Street NW	Sample results of the wastewater from a storm manhole (MH299386) located near 134-Avenue & 41-Street NW were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 2,200,000 CFU/100 mL. The original sample was collected on January 8, 2024 by EPCOR Industrial Wastewater Investigators. EPCOR will initiate further investigations into this event to determine the source of the cross-connection at this location. A "Notice to Comply" will be issued to the owners of any properties that have been confirmed to have a cross-connection. The Notices will require that the owners redirect their sanitary wastewater discharge from the storm sewer to the sanitary sewer system. This release was reported to AEPA (Ref# 423728). A written report was issued to AEPA on January 18, 2024.	Reportable- 3 rd Party Release	423728
12-Jan-2024	2404-51 Avenue NW	Hydraulic fluid (approx. 500 L) was released into the sanitary collection system located at DFI Piling (2404-51 Avenue NW). Absorbent material was used by the company to remove hydraulic fluid from around the floor drain where the hydraulic fluid entered the sanitary system. A 3rd party vacuum truck was called to the site to remove hydraulic fluid from the facilities oil / water interceptor. A "Notice to Comply" was issued to the company to discontinue the release of prohibited waste into the sewerage system. This release was reported to AEPA (Ref# 423767) by the company. A written report was issued to AEPA on January 18, 2024.	Reportable- 3 rd Party Release	423767

13-Jan-2024		Untreated wastewater (unknown volume) was released into the storm collection system from a private sanitary line surcharge located at a Tim Hortons restaurant (11120-170 Street NW). EPCOR equipment was mobilized to the site to clear the blockage in the sanitary line. EPCOR crews were not able to clean the impacted storm collection system at the time of this release. An MTV inspection confirmed a partial collapse of the sanitary line. A construction dig-up work order was created as a high priority repair. EPCOR will complete inspections of upstream businesses to ensure pre-treatment systems are in proper working order and are adequately maintained. EPCOR may engage in compliance activity under the authority of Bylaw 19627 based on inspection findings to prevent a reoccurrence. This release was reported to AEPA (Ref# 423822). A written report was issued to AEPA on January 19, 2024.	Reportable- 3 rd Party Release	423822
25-Jan-2024		Sample results of the wastewater from a storm manhole (MH270975) located near 3211-104 Avenue NW were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 8,200,000 CFU/100 mL. The original sample was collected on January 23, 2024 by EPCOR Industrial Wastewater Investigators. EPCOR will initiate further investigations into this event to determine the source of the cross-connection at this location. Notice to Comply will be issued to the owners of any properties that have been confirmed to have a cross-connection. The Notices will require that the owners redirect their sanitary wastewater discharge from the storm sewer to the sanitary sewer system. This release was reported to AEPA (Ref# 424282). A written report was issued to AEPA on February 1, 2024.	Reportable- 3 rd Party Release	424282
29-Jan-2024	2804-Calgary Trail NW	Untreated wastewater (unknown volume) was released into the storm collection system from a private sanitary line surcharge located at a business complex (2804-Calgary Trail NW). EPCOR equipment was mobilized to the site to clear the blockage in the sanitary line and clean the impacted storm collection system (PIP78230). EPCOR Industrial Wastewater Investigators will issue a Notice to Comply to the property owner for the release. This release was reported to AEPA (Ref# 424460). A written report was issued to AEPA on February 5, 2024.	Reportable- 3 rd Party Release	424460
30-Jan-2024	12421-48 Street NW	An unknown hydrocarbon (approx. 2L) were released into the storm collection system (MH580700) at a residential alleyway located at 12421-48 Street NW. EPCOR Industrial Wastewater Investigators could not determine the source of the release. The investigators used absorbent pads to remove contaminants from the spill site. This release was reported to AEPA (Ref# 424503). A written report was not requested by AEPA.	Reportable- 3 rd Party Release	424503
31-Jan-2024	582-Evergreen Avenue NW	Untreated wastewater (approx. 100L) was released from a private sanitary manhole surcharge located at the Evergreen Trailer Park (582-Evergreen Avenue NW). EPCOR Industrial Wastewater Investigators confirmed that the release was contained on the ground and had been cleaned-up by a private contractor. There was no release of untreated wastewater into the storm collection system. This release was reported to AEPA (Ref# 424541) by the property manager. A written report was issued to AEPA on January 31, 2024.	Reportable- 3 rd Party Release	424541
09-Feb-2024	19803-96A Street NW	Sample results of the wastewater from a private storm manhole located near a condominium complex (19803-96A Street NW) were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 7,700,000 CFU/100 mL. The original sample was collected on February 6, 2024 by EPCOR Industrial Wastewater Investigators. A Notice to Comply was issued to the condominium association to locate and repair the cross-connection. This release was reported to AEPA (Ref# 424823). A written report was issued to AEPA on February 15, 2024.	Reportable- 3 rd Party Release	424823
23-Feb-2024		Sample results of the wastewater from a private sanitary manhole located at Aurora Machine (4504-53 Avenue NW) were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 18100 Appendix A and Bylaw 18093 Schedule A "Prohibited Wastes" for Nickel at 9.75 mg/L. The original sample was collected on February 16, 2024 by EPCOR Industrial Wastewater Investigators. A Notice to Comply was issued to the business to discontinue the release of restricted / hazardous waste into the sewerage system. This release was reported to AEPA (Ref# 425356). A written report was issued to AEPA on March 5, 2024.	Reportable- 3 rd Party Release	425356
23-Feb-2024	7614-95 Avenue NW	Diesel fuel (approx. 25L) was released into the combined sewer system (MH250229) from a vehicle fuel theft at a residence located at 7614-95 Avenue NW. Absorbent booms were used to remove contaminants from inside the combined manhole. A City of Edmonton street sweeper was called in to remove contaminants from the area surrounding the spill site. This release was reported to AEPA (Ref# 425260) by City of Edmonton – Fire Services. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	425260
26-Feb-2024		Hydraulic fluid (approx. 25L) was released from a City of Edmonton snow plow located near 109-Street & Princess Elizabeth Avenue NW. The hydraulic fluid was slowly released onto the roadway as the plow travelled down 97-Street to the City of Edmonton – Central Yard (10517-95 Street NW). This release was reported to AEPA (Ref# 425400) by the City of Edmonton. A written report was issued to AEPA on March 1, 2024.	Reportable- 3 rd Party Release	425400

		A 12% Acetic Acid solution (approx. 3000L) was released into the storm collection system at Bimbo Canada (12139-160 Street NW). A 3rd party vacuum truck was called-in to remove contaminants from the private storm collection system. The storm wastewater from this facility	Reportable-	
27-Feb-2024	12139-160 Street NVV	would release into the North Saskatchewan River thru storm Outfall #18 (OF223752). This release was reported to AEPA (Ref# 425409) by the company. A written report was issued to AEPA on March 4, 2024.	3 rd Party Release	425409
05-Mar-2024	9608-25 Avenue NW	Boiler blowdown chemical (approx. 350L) was released into the storm collection system by a private company (BioNeutra North America Inc.) located at 9608-25 Avenue NW. EPCOR Industrial Wastewater Investigators arrived on site and directed the manager of the company to stop the discharge of boiler wastewater into their private storm catch basin. A Notice to Comply was issued to the company to discontinue the release of restricted waste into the sewerage system. A second Notice to Comply was issued that required the company to remove the wastewater (boiler chemical) from their private catch basin. This release was reported to AEPA (Ref# 425622) by the company. A written report was issued to AEPA on March 8, 2024.	Reportable- 3 rd Party Release	425622
10-Mar-2024		EPCOR Industrial Wastewater Investigators responded to a public complaint of hydrocarbon odours near the Mill Creek Oil Separator (8501-70 Avenue NW). The investigators checked the storm collection system and Mill Creek near the separator, but did not observe any visual evidence of a release to the environment. As a precaution the investigators placed a boom across Mill Creek to contain and absorb any trace hydrocarbons at this location. EPCOR will periodically re-inspect and replace the booms as required. No further investigation of the upstream storm system is planned at this time as no release to the storm collection system has been identified. This release was reported to AEPA (Ref# DINCO005460). A written report was issued to AEPA on March 18, 2024.	Reportable- 3 rd Party Release	0005460
	Whitemud Drive & Rainbow Valley Bridge	Sediment (unknown volume) was released into Whitemud Creek by a City of Edmonton Contractor (Graham Infrastructure LP) at the Terwillegar Drive Stage 2 Project worksite (Whitemud Drive & Rainbow Valley Bridge NW). Increased water levels during spring melt / runoff rose above the silt fence surrounding a previously isolated excavation near the creek. Immediately following the release, the contractor removed debris from the flooded area. To prevent a reoccurrence, Graham Construction will re-establish silt fencing and sandbags, complete a fish rescue, dewater the flooded area and place clay material along the bank to form a berm. This release was reported to AEPA (Ref# 425790) by the City of Edmonton. A written report was issued to AEPA on March 18, 2024.	Reportable- 3 rd Party Release	425790
16-Mar-2024	Street NW	Diesel fuel (approx. 1L) was released into the storm collection system (CB261162) from a private vehicle near the intersection of 116-Avenue & 133-Street NW. The unidentified vehicle damaged a fire hydrant and then left the scene of the accident. EPCOR Industrial Wastewater Investigators used absorbent pads to remove contaminants from the impacted storm collection system. EPCOR Water Services completed repairs to the damaged fire hydrant. This release was reported to AEPA (Ref# 426023). A written report was issued to AEPA on March 22, 2024.	Reportable- 3 rd Party Release	426023
20-Mar-2024	10044-90 Avenue NW	Sample results of the wastewater from a storm manhole (MH315915) near a private residence (10044-90 Avenue NW) were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 18100 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 3000 CFU/100 mL. The original sample was collected on March 18, 2024 by EPCOR Industrial Wastewater Investigators. EPCOR Industrial Wastewater Investigators have issued a Notice to Comply to the homeowner to locate and repair the cross-connection. This release was reported to AEPA (Ref# 426177). A written report was issued to AEPA on March 27, 2024.	Reportable- 3 rd Party Release	426177
27-Mar-2024	10204-119 Street NW	Untreated wastewater (unknown volume) was released thru an interconnection (PIP49190) located at 10204-119 Street NW. A blockage occurred in a combined line sewer pipe, which then released untreated wastewater thru the interconnection into the nearby storm manhole (MH255520). A 3rd party company has been identified as releasing concrete waste into the combined line resulting in the blockage. It has been confirmed that during dry weather flow, the storm line at this location flows into the combined sewer system and on to the Gold Bar Wastewater Treatment Plant for treatment. EPCOR equipment was mobilized to the site and cleared the downstream obstruction restoring normal flow. EPCOR also initiated an emergency repair in the downstream system to remove any remaining concrete which would interfere with the operation of the system. Compliance activity has been initiated against the third party and the interconnection continues to be monitored through remote sensor. This release was reported to AEPA (Ref# 426376). A written report was issued to AEPA on April 4, 2024.	Reportable- 3 rd Party Release	426376

31-Mar-2024		Glycol (approx. 0.5L) was released into a storm catch basin (CB236026) by a City of Edmonton – Transit bus located at 17404-90 Avenue NW. EPCOR Industrial Wastewater Investigators confirmed that the release was contained with the catch basin sump and there was no release of glycol to the storm collection system. An EPCOR vactor truck was mobilized to the spill site to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA (Ref# 426417) by the City of Edmonton. A written report was issued to AEPA on April 4, 2024.	Reportable- 3 rd Party Release	426417
01-Apr-2024	18204-93 Avenue NW	Wastewater (unknown volume) was released from a private waste collection vehicle garbage fire (18204-93 Avenue NW). A fire broke out in the back of a private waste collection vehicle and City of Edmonton – Fire Services was called-in to extinguish the fire. Water that was used to put out the fire entered a nearby storm catch basin (MH234253). No debris or contaminants were observed in the downstream storm collection system. This release was reported to AEPA (Ref# 426439). A written report was issued to AEPA on April 5, 2024.	Reportable- 3 rd Party Release	426439
02-Apr-2024		Sample results of the wastewater from a private storm manhole near a private residence (425-Abbotsfield Road NW) were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 1,500,000 CFU/100 mL. The original sample was collected on March 27, 2024 by EPCOR Industrial Wastewater Investigators. EPCOR Industrial Wastewater Investigators have issued a Notice to Comply to the property owner to locate and repair the cross-connection. This release was reported to AEPA (Ref# 426450). A written report was issued to AEPA on April 4, 2024.	Reportable- 3 rd Party Release	426450
02-Apr-2024	804-181 Street SW	Sample results of the wastewater from a drainage ditch near a private residence (804-181 Street SW) were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 2,800 CFU/100 mL. The original sample was collected on March 21, 2024 by EPCOR Industrial Wastewater Investigators. EPCOR Industrial Wastewater Investigators have identified that the septic mound on the property is not functioning as intended and discharges of untreated wastewater are occurring infrequently from the property. EPCOR has issued a Notice to Comply to the property owner to discontinue the release of restricted waste into the sewerage system. This release was reported to AEPA (Ref# 426470). A written report was issued to AEPA on April 8, 2024.	Reportable- 3 rd Party Release	426470
04-Apr-2024	12038-107 Avenue	Glycol (approx. 5L) was released into a storm catch basin (CB260036) by a City of Edmonton – Transit bus located at 12038-107 Avenue NW. EPCOR Industrial Wastewater Investigators confirmed that the release was contained with the catch basin sump and there was no release of glycol to the storm collection system. An EPCOR vactor truck was mobilized to the spill site to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA (Ref# 426534) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	426534
06-Apr-2024	8560-112 Street NW	Propylene glycol (approx. 4500L) was released into the combined sewer system from the University of Alberta – Li Ka Shing Centre (8560-112 Street NW). The Manager of Environment & Support Services with the University of Alberta (UofA) reported that the release was a result of work with the buildings HVAC system. EPCOR was notified of the release on April 8, 2024. A second release of propylene glycol (approx. 4500L) occurred from the HVAC system at the Li Ka Shing Centre for Health Research Innovation on April 8, 2024. EPCOR was notified of this release on April 9, 2024. The Goldbar treatment plant was notified of both spills and no anomalies had been observed at the time of the releases. EPCOR has issued a Notice to Comply to the University of Alberta to discontinue the release of prohibited waste (propylene glycol) into the sewerage system. Both releases were reported to AEPA (Ref# 426635) by the University of Alberta. A written report was issued to AEPA on April 12, 2024.	Reportable- 3 rd Party Release	426635
13-Apr-2024	12403-Fort Road NW	Diesel fuel (approx. 2L) was released into a sanitary floor drain at the City of Edmonton – Kathleen Andrews Transit Garage (12403-Fort Road NW). EPCOR Industrial Wastewater Investigators confirmed that the floor drains inside the building are connected to a downstream interceptor that contained the diesel fuel contaminants. This release was reported to AEPA (Ref# 426837) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	426837
15-Apr-2024	10517-95 Street NW	Potable water (approx. 15L) was released from a fire hydrant into a nearby storm catch basin (CB264696) at the City of Edmonton – Central District Yard (10517-95 Street NW). The catch basin at this location releases into the combined sewer system. This release was reported to AEPA (Ref# 426913) by the City of Edmonton. A written report was issued to AEPA on April 17, 2024.	Reportable- 3 rd Party Release	426913

18-Apr-2024	13020-56 Street NW	Paint (approx. 5L) was released into a floor sump at the City of Edmonton – Kennedale Traffic Operations building (13020-56 Street NW). The paint was fully contained within the sump. A private vacuum truck (NorAlta) was called-in to remove the contaminants from the sump. This release was reported to AEPA (Ref# 427074) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	427074
19-Apr-2024	13650-50 Street NW	Untreated wastewater (unknown volume) was released into the storm collection system from a private sanitary line surcharge located at COSTCO Wholesale (13650-50 Street NW). A 3rd party company was called to the site to clear the blockage in the sanitary line. EPCOR equipment was mobilized to clean the impacted storm collection system and surrounding area. This release was reported to AEPA (Ref# 427098). A written report was issued to AEPA on April 26, 2024.	Reportable- 3 rd Party Release	427098
23-Apr-2024	11760-109 Street NW	Contaminated wastewater (unknown volume) was released by City of Edmonton – Fire Services at the Blatchford Hanger 11 (11760-109 Street NW) fire. Water that was used to put out the fire was released into the combined collection system. This release was reported to AEPA (Ref# 427196) by City of Edmonton – Fire Services. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	427196
24-Apr-2024	1851-111 Street NW	Diesel fuel (approx. 1L) was released into a storm catch basin at the EPCOR Kaskitayo Reservoir filling station (1851-111 Street NW). EPCOR Industrial Wastewater Investigators placed absorbent material into the catch basin to absorb fuel residue. The investigators inspected the downstream storm outfall (OF327183) located at Blackmud Creek and no hydrocarbon contaminants were observed. This release was reported to AEPA (Ref# 427272). A written report was issued to AEPA on May 1, 2024.	Reportable- 3 rd Party Release	427272
30-Apr-2024	13650-50 Street NW	Hydraulic fluid (approx. 20L) was released from a trash compactor into the storm collection system at COSCO Wholesale (13650-50 Street NW). EPCOR Industrial Wastewater Investigators confirmed that the contaminants were removed from the storm collection system and surrounding area by a 3rd party vacuum truck (Supreme Vac). This release was reported to AEPA (Ref# 427488) by the company. A written report was issued to AEPA on May 6, 2024.	Reportable- 3 rd Party Release	427488
01-May-2024		Glycol (approx. 0.5L) was released into the storm collection system (CB383009) by a City of Edmonton – Transit bus located at 1718-Rabbit Hill Road NW. EPCOR Industrial Wastewater Investigators confirmed that the stormwater from CB383009 would release into the Hodgson SWMF (SWM372285). A 3rd party (NorAlta) vactor truck was mobilized to the spill site to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA (Ref# 427499) by the City of Edmonton. A written report was issued to AEPA on May 2, 2024.	Reportable- 3 rd Party Release	427499
01-May-2024		Pool water (approx. 4000L) was released into the storm collection system (CB240081) by a private resident located at 14019-90 Avenue NW. EPCOR Industrial Wastewater Investigators arrived on site and educated the homeowner on the importance of dechlorinating pool water before releasing it to the nearby storm catch basin. The resident was also informed of the requirement to contact EPCOR when a large volume release is occurring. This release was reported to AEPA (Ref# 427614) by the homeowner. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	427614
05-May-2024		Sample results of the stormwater discharge from the City of Edmonton SE District Yard (5404-59 Avenue NW) were received and reviewed by City of Edmonton Environment and Climate Resilience (COEECR). The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Chemical Oxygen Demand at 814 mg/L and Total Cadmium at 0.0008 mg/L. The original sample from the SE District Yard was collected on April 17, 2024 by COEECR. This release was reported to AEPA (Ref# 427576) by the City of Edmonton. A written report was issued to AEPA on May 16, 2024.	Reportable- 3 rd Party Release	427576
05-May-2024	14402-114 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton NW District Yard (14402-114 Avenue NW) were received and reviewed by City of Edmonton Environment and Climate Resilience (COEECR). The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Chemical Oxygen Demand at 593 mg/L, Total Phosphorous at 1.59 mg/L, E.coli at 330 CFU/100 mL, Total Cadmium at 0.0010 mg/L, Total Lead at 0.072 mg/L, Oil & Grease at 18 mg/L and Total Zinc at 0.971 mg/L. The original sample from the NW District Yard was collected on April 17, 2024 by COEECR. This release was reported to AEPA (Ref# 427578) by the City of Edmonton. A written report was issued to AEPA on May 16, 2024.	Reportable- 3 rd Party Release	427578
05-May-2024		Sample results of the stormwater discharge from the City of Edmonton NE District Yard (13003-56 Street NW) were received and reviewed by City of Edmonton Environment and Climate Resilience (COEECR). The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Chemical Oxygen Demand at 1040 mg/L, Total Phosphorous at 2.37 mg/L, Total Cadmium at 0.002 mg/L, Total Lead at 0.049 mg/L, Total Nickel at 0.087 mg/L, Oil & Grease at 18 mg/L and Total Zinc at 1.03 mg/L. The original sample from the NE District Yard was collected on April 17, 2024 by COEECR. This release was reported to AEPA (Ref# 427577) by the City of Edmonton. A written report was issued to AEPA on May 16, 2024.	Reportable- 3 rd Party Release	427577

05-May-2024	9204-213 Street NW	Glycol (approx. 1L) was released into the floor interceptor at the City of Edmonton – Fire Station #29 located at 9204-213 Street NW. EPCOR Industrial Wastewater Investigators confirmed that the spill was cleaned up by COE – Fire Services using absorbent material from a spill kit. There was no release of glycol into the storm / sanitary collection system. This release was reported to AEPA (Ref# 427626) by the City of Edmonton. A written report was issued to AEPA on May 9, 2024.	Reportable- 3 rd Party Release	427626
05-May-2024	4510-68 Avenue NW	Sample results of the stormwater discharge from Maple Leaf Metals (4510-68 Avenue NW) were received and reviewed by EPCOR Monitoring & Compliance. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Cadmium at 0.0005 mg/L, Chromium at 0.089 mg/L, Copper at 0.160 mg/L, Lead at 0.020 mg/L, Nickel at 0.080 mg/L, and Zinc at 0.30 mg/L. The original sample from the company was collected on May 1, 2024 by EPCOR Industrial Wastewater Investigators. EPCOR Industrial Wastewater Investigators have issued a Notice to Comply to the company to discontinue the release of restricted wastes into the storm sewer system. This release was reported to AEPA (Ref# 427728) by the company. A written report was issued to AEPA on May 15, 2024.	Reportable- 3 rd Party Release	427728
08-May-2024	11211-142 Street NW	Glycol (approx. 190L) was released into a floor drain at the TELUS World of Science facility (11211-142 Street NW). EPCOR Industrial Wastewater Investigators confirmed that the release from the boiler system at the facility entered the sanitary sewer system. Absorbent pads from a spill kit were used to clean-up contaminants around the floor drain. There was no release of glycol into the storm collection system. This release was reported to AEPA (Ref# 427714) by the City of Edmonton. A written report was issued to AEPA on May 10, 2024.	Reportable- 3 rd Party Release	427714
13-May-2024	12824-48 Street NW	Gasoline (approx. 100L) was released into the storm collection system (MH283449) from a vehicle fuel theft at Enterprise Rent-A-Car Canada located at 12824-48 Street NW. A 3rd party vacuum truck (Clean Harbors) was called to the site to clean-up the impacted storm collection system and surrounding area. EPCOR has issued a Notice to Comply to the company to discontinue the release of prohibited waste (gasoline) into the sewerage system. This release was reported to AEPA (Ref# 428023). A written report was issued to AEPA on May 15, 2024.	Reportable- 3 rd Party Release	428023
16-May-2024	12512-Landsdowne Drive NW	Wastewater (approx. 334 cubic meters) was released into the storm collection system by Graham Infrastructure located at 12512-Landsdowne Drive NW. The contractor had an EPCOR permit (PR24-506536473) to release wastewater generated from hydro demolition activities into the sanitary sewer system. EPCOR Industrial Wastewater Investigators confirmed that the contractor had been releasing the wastewater into a nearby storm manhole (MH303887). The contractor was instructed by the investigators to move the wastewater discharge hose from the storm to the sanitary manhole (MH211008). This release was reported to AEPA (Ref# 428117) by the contractor. A written report was issued to AEPA on May 23, 2024.	Reportable- 3 rd Party Release	428117
16-May-2024	13027-83 Street NW	Hydraulic fluid (approx. 4L) was released into the storm collection system (MH277657) from a City of Edmonton waste collection truck located at 13027-83 Street NW. EPCOR Industrial Wastewater Investigators confirmed that recent rainfall had released hydraulic fluid into the storm collection system. Absorbent pads were used to remove contaminants from the spill site. This release was reported to AEPA (Ref# 428116) by the City of Edmonton. A written report was issued to AEPA on May 22, 2024.	Reportable- 3 rd Party Release	428116
17-May-2024	102-Avenue & 176- Street NW	Glycol (approx. 0.5L) was released from a City of Edmonton – Transit bus located at 102-Avenue & 176-Street NW. EPCOR Industrial Wastewater Investigators confirmed that there was no release of glycol into the storm / sanitary collection system. The City of Edmonton mobilized a sweeper truck to remove contaminants from the spill site. This release was reported to AEPA (Ref# 428139) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	428139
21-May-2024	114-Avenue & 144- Street NW	DEF fuel additive (approx. 2L) was released into a private storm catch basin at the City of Edmonton – fueling station located at 114-Avenue & 144-Street NW. EPCOR Industrial Wastewater Investigators confirmed that the release had been contained within the private storm sewer system at this location. The City of Edmonton called-in a 3rd party vacuum truck to clean out the impacted private catch basin and surrounding area. This release was reported to AEPA (Ref# 428217) by the City of Edmonton. A written report was issued to AEPA on May 28, 2024.	Reportable- 3 rd Party Release	428217
	6609-Gateway Boulevard NW	Calcium chloride / rain water mixture (approx. 3700L) was released into a private storm catch basin at the City of Edmonton – Southwest District Yard (6609-Gateway Boulevard NW). EPCOR Industrial Wastewater Investigators confirmed that the release from this location would have entered the combined sewer system. The City of Edmonton called-in a 3rd party vacuum truck to clean out the impacted private catch basin and surrounding area. This release was reported to AEPA (Ref# 428256) by the City of Edmonton. A written report was issued to AEPA on May 28, 2024.	Reportable- 3 rd Party Release	428256

22-May-2024	14402-114 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton NW District Yard (14402-114 Avenue NW) were received and reviewed by City of Edmonton Environment and Climate Resilience (COEECR). The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for E. coli at 4300 CFU/100 mL and Phenols at 0.009 mg/L. The original sample from the NW District Yard was collected on May 7, 2024 by COEECR. This release was reported to AEPA (Ref# 428246) by the City of Edmonton. A written report was issued to AEPA on May 24, 2024.	Reportable- 3 rd Party Release	428246
22-May-2024	13003-56 Street NW	Sample results of the stormwater discharge from the City of Edmonton NE District Yard (13003-56 Street NW) were received and reviewed by City of Edmonton Environment and Climate Resilience (COEECR). The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Chemical Oxygen Demand at 204 mg/L and E.coli at 1000 CFU/100 mL. The original sample from the NE District Yard was collected on May 7, 2024 by COEECR. This release was reported to AEPA (Ref# 428245) by the City of Edmonton. A written report was issued to AEPA on May 24, 2024.	Reportable- 3 rd Party Release	428245
22-May-2024	5404-59 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton SE District Yard (5404-59 Avenue NW) were received and reviewed by City of Edmonton Environment and Climate Resilience (COEECR). The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Chemical Oxygen Demand at 148 mg/L and Total Cadmium at 0.0027 mg/L. The original sample from the SE District Yard was collected on May 7, 2024 by COEECR. This release was reported to AEPA (Ref# 428244) by the City of Edmonton. A written report was issued to AEPA on May 24, 2024.	Reportable- 3 rd Party Release	428244
22-May-2024	129-Avenue & 127- Street NW	Hydraulic fluid (approx. 0.5L) was released from a City of Edmonton – garbage truck located at 129-Avenue & 127-Street NW. EPCOR Industrial Wastewater Investigators confirmed that there was no release of hydraulic fluid into the storm / sanitary collection system. The City of Edmonton mobilized a sweeper truck to remove contaminants from the spill site. This release was reported to AEPA (Ref# 428291) by the City of Edmonton. A written report was issued to AEPA on May 28, 2024.	Reportable- 3 rd Party Release	428291
22-May-2024	17616-111 Avenue NW	Gasoline (approx. 80L) was released from a damaged vehicle into the storm collection system at the Tesla Service Center located at 17616-111 Avenue NW. EPCOR Industrial Wastewater Investigators confirmed that a 3rd party vacuum truck was called to the site to clean contaminants from the impacted private storm sewer system and surrounding area. This release was reported to AEPA (Ref# 428294) by the company. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	428294
24-May-2024	105-Avenue & 135- Street NW	Diesel fuel (approx. 125L) was released from a vehicle leak into the storm collection system (CB345657) from the Marigold Infrastructure Partners worksite located at 105-Avenue & 135-Street NW. A 3rd party vacuum truck was called to the site to clean contaminants from the impacted storm collection system and surrounding area. This release was reported to AEPA (Ref# 428360) by the company. A written report was issued to AEPA on May 26, 2024.	Reportable- 3 rd Party Release	428360
24-May-2024	8611-44 Avenue NW	Motor oil (approx. 5L) was released from an unknown source into the storm collection system (CB557833) located in a residential neighborhood at 8611-44 Avenue NW. A 3rd party vacuum truck (GFL Environmental) was called to the site to clean contaminants from the impacted storm collection system and surrounding area. EPCOR Industrial Wastewater Investigators will issue letters to nearby residential property owners providing educational material regarding Drainage Bylaw 19627, stormwater discharges and environmental impacts. This release was reported to AEPA (Ref# 428358). A written report was issued to AEPA on May 29, 2024.	Reportable- 3 rd Party Release	428358
29-May-2024	5929-86 Street NW	Treated grease trap wastewater (unknown volume) was released into the storm collection system from Suck-U-Sump located at 5929-86 Street NW. The grease trap waste had been treated with a hydrated lime polymer to flocculate the oil & grease prior to discharging the wastewater to a nearby private storm catch basin. The business owner has been directed by EPCOR Industrial Wastewater Investigators to complete a clean-up of the impacted private storm collection system and the surrounding site. EPCOR Investigators have directed the business owner to discontinue the release of wastewater to the storm collection system. This release was reported to AEPA (Ref# 428540) by the company. A written report was issued to AEPA on June 5, 2024.	Reportable- 3 rd Party Release	428540
03-Jun-2024	18603-106A Avenue NW	Fuel / firefighting chemicals (approx. 30L) were released into the storm collection system (MH251952) at the City of Edmonton – Fire Services Training Center (18603-106A Avenue NW). EPCOR Industrial Wastewater Investigators confirmed that recent rainfall had overflowed an open pan used for firefighting training and released contaminants into a nearby storm manhole. A 3rd party vactor truck was mobilized to the spill site to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA (Ref# 428726) by City of Edmonton – Fire Services. A written report was issued to AEPA on June 10, 2024.	Reportable- 3 rd Party Release	428726

05-Jun- 2024	14724-65 Street NW	Sample results of the wastewater from a storm manhole (MH298741) located at 14724-65 Street NW were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 25,000 CFU/100 mL. EPCOR Industrial Wastewater Investigators conducted a dye test and confirmed the presence of a cross-connection at this location. A Notice to Comply was issued to the property owner to have their sanitary wastewater redirected from the storm sewer into the sanitary sewer system. Once the repairs are completed, EPCOR will collect a sample to ensure compliance. This release was reported to AEPA (Ref# 428829). A written report was issued to AEPA on June 12, 2024.	Reportable- 3 rd Party Release	428829
06-Jun-2024		Firefighting water (unknown volume) was released into the storm collection system from a commercial vehicle fire (Collective Waste Solutions) located at 5134 Mullen Road NW. A representative from the company stated to EPCOR Industrial Wastewater Investigators there was no fuel/oils released from the vehicle. This release was reported to AEPA (Ref# 428871) by the complainant. A written report was issued to AEPA on June 11, 2024.	Reportable- 3 rd Party Release	428871
07-Jun-2024	14339-50 Street NW	Untreated wastewater (unknown volume) was released into the storm collection system from a sanitary line surcharge located near 14339-50 Street NW. EPCOR Industrial Wastewater Investigators observed wastewater surcharging from a sanitary manhole (MH298552) and releasing into nearby storm catch basins (CB487957 & CB484643). EPCOR equipment was mobilized to release the sanitary line blockage (grease) and clean the impacted storm collection system. EPCOR will conduct further investigations of upstream businesses to ensure compliance with Drainage Bylaw 19627, including adequate pretreatment systems and maintenance. This release was reported to AEPA (Ref# 428934). A written report was issued to AEPA on June 13, 2024.	Reportable- 3 rd Party Release	428934
11-Jun-2024	12010-River Valley Road NW	A 50% propylene glycol solution (approx. 70L) was released into a floor drain at the City of Edmonton – Victoria Park Pavilion (12010-River Valley Road NW). EPCOR Industrial Wastewater Investigators confirmed that the floor drain is connected to a holding tank and there was no release of glycol to the storm / sanitary collection system. The COE will ensure that wastewater from the holding tank will be hauled away to an acceptable disposal facility. This release was reported to AEPA (Ref# 429046) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	429046
11-Jun-2024	8620-58 Avenue INW	Diesel fuel (approx. 20L) was released into a floor sump at the City of Edmonton – Thomas Ferrier Garage (8620-58 Avenue NW). EPCOR Industrial Wastewater Investigators confirmed that the diesel fuel was contained within the sump and there was no release to the storm / sanitary collection system. A 3rd party vactor truck was called-in to remove contaminants from the sump. This release was reported to AEPA (Ref# 429058) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	429058
	4710-Gateway Boulevard NW	Potable water (approx. 15,000 cubic meters) was released into the storm collection system at the Ever Square Professional Building (4710-Gateway Boulevard NW). EPCOR Industrial Wastewater Investigators confirmed that a broken water valve had flooded the building parkade. EPCOR Water D&T was mobilized to the site and closed off the water to the damaged line. The building contractor called-in a 3rd party company to pump the water from the parkade into the storm collection system. When EPCOR Investigators arrived on site they placed dechlorination pucks into the storm collection system (MH304003) to remove chlorine residue from the potable water. An unknown volume of dechlorinated and partially dechlorinated water entered the storm collection system and would have been released downstream thru storm Outfall #9 (OF207873). This release was reported to AEPA (Ref# 429122) by the contractor. A written report was issued to AEPA on June 26, 2024.	Reportable- 3 rd Party Release	429122
14-Jun-2024	2815-Anton Wynd SW	Diesel fuel (approx. 200L) was released into the storm collection system (CB528994) from a school bus fire at 2815-Anton Wynd SW. EPCOR Industrial Wastewater Investigators called in a 3rd party vacuum truck (GFL Environmental) to remove contaminants from the impacted storm collection system and surrounding area. This release was reported to AEPA (Ref# 429181) by City of Edmonton – Fire Services. A written report was not requested by AEPA.	Reportable- 3 rd Party Release	429181
14-Jun-2024		Hydrocarbons (approx. 5L) were released into the storm collection system (CB226883) by a resident located at 11411-51 Avenue NW. EPCOR Industrial Wastewater Investigators placed absorbent booms in the impacted storm collection system and the surrounding area. A heavy rainfall during the investigation prevented any further clean-up activities. A Notice to Comply was issued to the property owner to discontinue the release of restricted waste into the sewerage system. This release was reported to AEPA (Ref# 429192). A written report was issued to AEPA on June 21, 2024.	Reportable- 3 rd Party Release	429192

26-Jun-2024		Contaminants (unknown volume) from firefighting activities were released into the storm collection system from a commercial building fire at 6415-75 Street NW. EPCOR Industrial Wastewater Investigators observed that water used to fight a garbage fire at this facility had entered nearby storm catch basins. The storm collection system at this location releases into Mill Creek thru the Mill Creek Oil Separator (OF385992). This release was reported to AEPA (Ref# 429620) by City of Edmonton – Fire Services. A written report was not requested by AEPA.	Reportable- 3rd Party Release	429620
24-Jun-2024		that there was no release of fuel to the storm / sanitary collection system. This release was reported to AEPA (Ref# 429484) by City of Edmonton – Fire Services. A written report was not requested by AEPA	Reportable- 3rd Party Release	429484
24-Jun-2024	7381-May Common NW	Motor oil (approx. 1L) was released from an ambulance located at 7381-May Common NW. A City of Edmonton street sweeper was called to the site to remove contaminants from the roadway. EPCOR Industrial Wastewater Investigators confirmed that there was no release of oil to the storm / sanitary collection system. This release was reported to AEPA (Ref# 429544) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3rd Party Release	429544
21-Jun-2024	9704-182 Street NW	Untreated wastewater (unknown volume) was released into the storm collection system from a private sanitary line surcharge located at the La Perle Shopping Centre (9704-182 Street NW). EPCOR Industrial Wastewater Investigators observed wastewater surcharging from a private sanitary manhole and releasing into a nearby storm catch basin. A 3rd party vacuum truck (Renew Services Inc.) was called to the site to release the sanitary line blockage and clean-up the impacted storm collection system and surrounding area. A Notice to Comply was issued to the property owner to discontinue the release of restricted waste into the sewerage system. To prevent a reoccurrence of this incident, inspections of upstream businesses were performed to ensure that pre-treatment systems are in working order and are adequately maintained. Notices to Comply were issued to three additional businesses in the complex. This release was reported to AEPA (Ref# 429576) by EPCOR Monitoring & Compliance. A written report was issued to AEPA on June 26, 2024.	Reportable- 3 rd Party Release	429576
19-Jun-2024		Diesel fuel (approx. 400L) was released into the storm collection system (MH254752) from a vehicle accident at Saputo Dairy Products located at 16110-116 Avenue NW. EPCOR Industrial Wastewater Investigators placed absorbent booms in EPCOR storm manholes to absorb and contain any contaminants in the storm collection system. A 3rd party vacuum truck (GFL Environmental) was called to the site to clean-up the impacted storm collection system and surrounding area. This release was reported to AEPA (Ref# 429364) by the company. A written report was issued to AEPA on June 20, 2024	Reportable- 3 rd Party Release	429364
19-Jun-2024	18562-104 Avenue NW	Gasoline (approx. 1L) was released into the storm collection system (MH404386) from a vehicle fuel theft at the Sunwapta Business Centre located at 18562-104 Avenue NW. A 3rd party vacuum truck (Suck-U-Sump Services) was called to the site to clean-up the impacted storm collection system and surrounding area. This release was reported to AEPA (Ref# 429330) by the property manager. A written report was issued to AEPA on June 20, 2024.	Reportable- 3 rd Party Release	429330
19-Jun-2024	9626-96A Street NW	Glycol (approx. 1L) was released into the combined sewer system at the City of Edmonton – Muttart Conservatory (9626-96A Street NW). EPCOR Industrial Wastewater Investigators confirmed that the release from a leaking coolant pipe entered a nearby floor drain and there was no release to the storm collection system. This release was reported to AEPA (Ref# 429312) by the City of Edmonton. A written report was issued to AEPA on June 24, 2024.	Reportable- 3 rd Party Release	429312
18-Jun-2024		Antifreeze (approx. 1L) was released into a storm catch basin (CB447109) from a City of Edmonton bus located at 4211-106 Street NW. EPCOR Industrial Wastewater Investigators confirmed that the release was contained within the catch basin sump. A 3rd party vacuum truck (GFL Environmental) was called to the site to remove contaminants from the catch basin and surrounding area. This release was reported to AEPA (Ref# 429278) by the City of Edmonton. A written report was issued to AEPA on June 24, 2024.	Reportable- 3 rd Party Release	429278
17-Jun-2024	8604-10 Avenue NW	A concrete slurry (approx. 5L) was released into the storm collection system (CB202562) by a City of Edmonton contractor located at 8604-10 Avenue NW. A 3rd party vacuum truck (GFL Environmental) was called to the site to remove contaminants from the impacted storm collection system and surrounding area. This release was reported to AEPA (Ref# 429281) by the City of Edmonton. A written report was issued to AEPA on June 24, 2024.	Reportable- 3 rd Party Release	429281

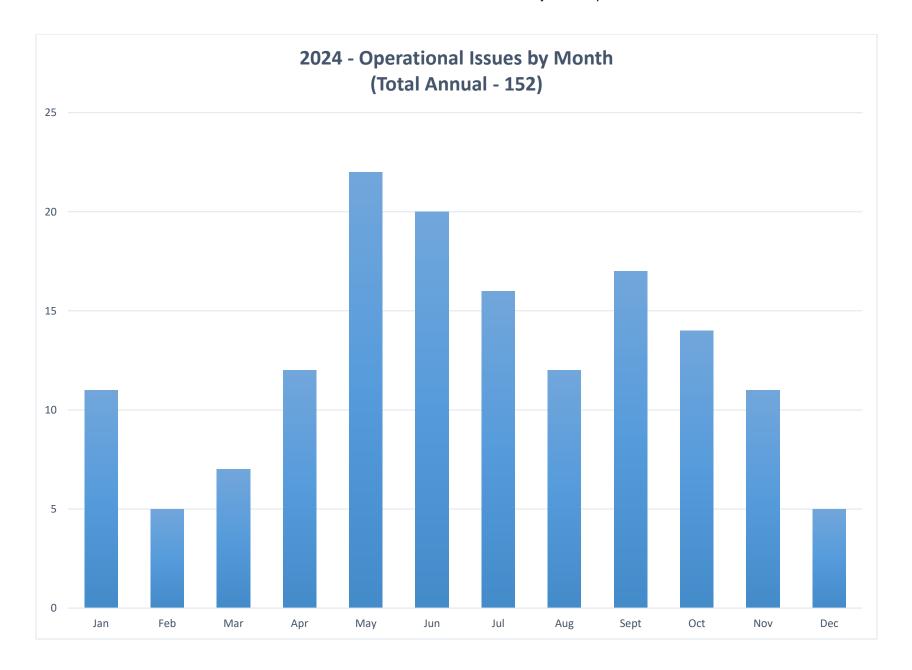
28-Jun-2024		Sample results of the stormwater discharge from the Price Steel Ltd (13500-156 Street NW) were received and reviewed by City of EPCOR Monitoring & Compliance. The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for BOD at 408 mg/L, COD at 1830 mg/L, Copper at 0.213 mg/L, E. coli at 2700 CFU/100 mL, Lead at 0.135, Total Phosphorus at 1.06 mg/L and Zinc at 0.845 mg/L. The original sample from the company was collected on June 13, 2024 by EPCOR Industrial Wastewater Investigators. A 3rd party vacuum truck (North Star Hydrovac) was called to the site to clean-up the impacted storm collection system and surrounding area. EPCOR has issued a Notice to Comply to the company to discontinue the release of restricted waste into the storm sewerage system. This release was reported to AEPA (Ref# 429763) by the company. A written report was issued to AEPA on July 2, 2024.	Reportable- 3rd Party Release	429763
28-Jun-2024	1718-Rabbit Hill Road NW	Gasoline (approx. 20L) was released from a damaged vehicle located at 1718-Rabbit Hill Road NW. EPCOR Industrial Wastewater Investigators confirmed that there was no release of gasoline into the storm / sanitary collection system. This release was reported to AEPA (Ref# 429705) by City of Edmonton – Fire Services. A written report was not requested by AEPA.	Reportable- 3rd Party Release	429705
03-Jul-2024	8-Steele Crescent NW	Untreated wastewater (unknown volume) was released into the storm collection system from a private residence located at 8-Steele Crescent NW. EPCOR Industrial Wastewater Investigators observed that the homeowner was pumping untreated wastewater out of their basement and onto the nearby street. The untreated wastewater ran down the street approximately 100 meters and entered a storm catch basin (CB296732). EPCOR equipment was mobilized to the site and removed the blockage in the sanitary system stopping the flow of untreated wastewater into the residential home. On-site remediation of this release was not possible at the time of response due to concurrent heavy rainfall events which transported the untreated wastewater down the street and into the storm collection system. This release was reported to AEPA (Ref# 429815). A written report was issued to AEPA on July 9, 2024.	Reportable- 3rd Party Release	429815
	111-Street & Cavanagh Drive SW	Asphalt cuttings (approx. 1L) was released into the storm collection system (CB543142) by a private contractor (Highline Electrical Constructors Ltd) located at 111-Street & Cavanagh Drive SW. EPCOR Industrial Wastewater Investigators observed silt residue along the roadway leading to the impacted catch basin. This release was reported to AEPA (Ref# 430313) by the contractor. A written report was issued to AEPA on July 23, 2024.	Reportable- 3rd Party Release	430313
09-Jul-2024	19107-22 Avenue NW	Hydraulic fluid (approx. 2L) was released into the sanitary sewer system (MH579259) from a landscaping truck accident at 19107-22 Avenue NW. A City of Edmonton sweeper was called to the site to remove contaminants from along the roadway. EPCOR Industrial Wastewater Investigators confirmed that there was no release of hydraulic fluid to the storm collection system. This release was reported to AEPA (Ref# 430114) by the landscaping company. A written report was not requested by AEPA.	Reportable- 3rd Party Release	430114
1 11 - Ind-2024	14402-114 Avenue NW	Sample results of the stormwater discharge from the City of Edmonton NW District Yard (14402-114 Avenue NW) were received and reviewed by City of Edmonton Environment and Climate Resilience (COEECR). The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Biochemical Oxygen Demand at 56 mg/L, Chemical Oxygen Demand at 3630 mg/L, Total Cadmium at 0.0029 mg/L, Hexavalent Chromium at 0.0178 mg/L, Total Lead at 0.048 mg/L and Phenols at 0.021 mg/L. The original sample from the NW District Yard was collected on June 27, 2024 by COEECR. This release was reported to AEPA (Ref# 430257) by the City of Edmonton. A written report was issued to AEPA on July 16, 2024.	Reportable- 3rd Party Release	430257
11-Jul-2024	13003-56 Street NW	Sample results of the stormwater discharge from the City of Edmonton NE District Yard (13003-56 Street NW) were received and reviewed by City of Edmonton Environment and Climate Resilience (COEECR). The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for Chemical Oxygen Demand at 216 mg/L and E.coli at 1000 CFU/100 mL. The original sample from the NE District Yard was collected on June 27, 2024 by COEECR. This release was reported to AEPA (Ref# 430255) by the City of Edmonton. A written report was issued to AEPA on July 16, 2024.	Reportable- 3rd Party Release	430255
11-Jul-2024		Sample results of the stormwater discharge from the City of Edmonton SE District Yard (5404-59 Avenue NW) were received and reviewed by City of Edmonton Environment and Climate Resilience (COEECR). The results of the sample exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B Restricted Wastes Applicable to Storm Sewers and Watercourses for E.coli at 480 CFU/100 mL. The original sample from the SE District Yard was collected on June 27, 2024 by COEECR. This release was reported to AEPA (Ref# 430253) by the City of Edmonton. A written report was issued to AEPA on July 16, 2024.	Reportable- 3rd Party Release	430253

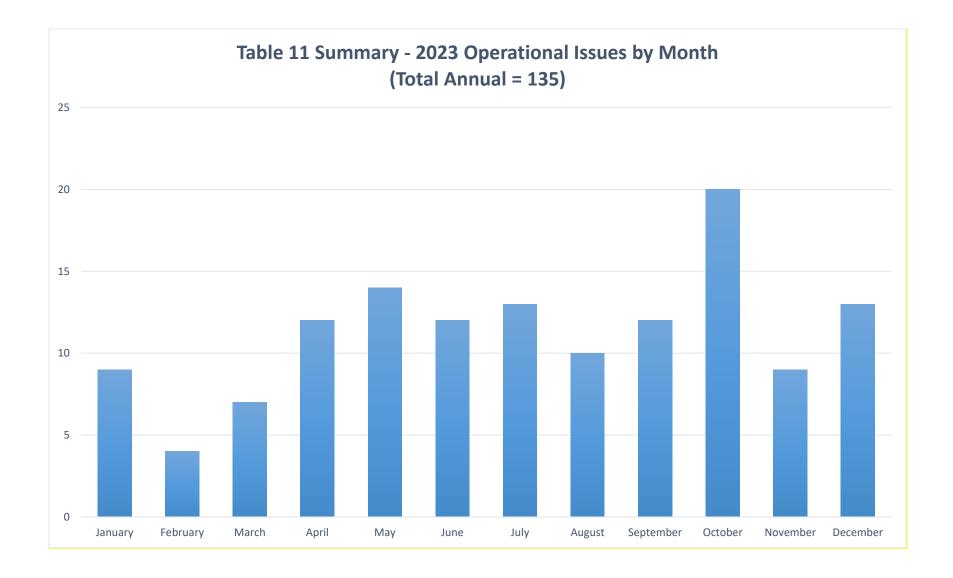
13-Jul-2024	757-Lee Ridge Road NW	Untreated wastewater / cleaning chemicals (approx. 200L) was released into the storm collection system (CB218342) from a homeowner located at 757-Lee Ridge Road NW. EPCOR Industrial Wastewater Investigators determined that the homeowner had used a solution of bleach / Mr. Clean to clean-out the holding tanks of his RV unit. A 3rd party (GFL Environmental) vactor truck was mobilized to the spill site to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA (Ref# 430354) by the resident. A written report was issued to AEPA on July 15, 2024.	Reportable- 3rd Party Release	430354
16-Jul-2024	149-Avenue & 59- Street NW	Sample results of the wastewater from a storm manhole (MH297519) located at 149-Avenue & 59-Street NW were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 1,100,000 CFU/100 mL. The original sample from this location was collected on July 8, 2024 by EPCOR Industrial Wastewater Investigators. EPCOR will initiate further investigations into this event to determine the source of the cross-connection at this location. EPCOR will work with impacted properties to identify and correct sanitary cross-connections to the storm collection system. This release was reported to AEPA (Ref# 430482). A written report was issued to AEPA on July 23, 2024.	Reportable- 3rd Party Release	430482
16-Jul-2024	13025-56 Street NW	Diesel fuel (approx. 100L) was released from a damaged street sweeper at the City of Edmonton – NE District Yard (13025-56 Street NW). EPCOR Industrial Wastewater Investigators confirmed that the diesel fuel was contained within the sump of a private storm catch basin and there was no release to the storm collection system. A 3rd party vactor truck (Noralta Environmental Services Ltd.) was called-in to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA (Ref# 430451) by City of Edmonton – Fire Services. A written report was not requested by AEPA.	Reportable- 3rd Party Release	430451
16-Jul-2024	6150-Davies Road NW	Diesel fuel (approx. 100L) was released from a damaged commercial vehicle (TST-CF Express) located at 6150-Davies Road NW. EPCOR Industrial Wastewater Investigators confirmed that the diesel fuel was contained on the road surface and there was no release to the storm collection system. A 3rd party environmental company (Rapid Response Industrial Group Ltd.) was called-in to remove contaminants from the roadway. This release was reported to AEPA (Ref# 430455) by the company. A written report was issued to AEPA on July 23, 2024.	Reportable- 3rd Party Release	430455
17-Jul-2024		Concrete slurry (approx. 100L) was released into the storm collection system (CB221765) from a private company (Bigfoot Concrete Services Inc.) located at 372-Lessard Drive NW. EPCOR Industrial Wastewater Investigators confirmed that the company removed the contaminants from the impacted storm catch basin and surrounding area. A Notice to Comply was issued to the company to discontinue the release of restricted waste into the storm sewer system. This release was reported to AEPA (Ref# 430528) by the company. A written report was not requested by AEPA.	Reportable- 3rd Party Release	430528
22-Jul-2024	29592-Parsons Road	Soybean oil (approx. 2000L) was released into the sanitary collection system from a private company (Ventura Foods) located at 29592-Parsons Road NW. During filling operations at the facility, a soybean oil holding tank overflowed into a nearby floor drain. The company used absorbent material from a spill kit to remove soybean oil contaminants from the floor. A Notice to Comply was issued to the company to discontinue the release of prohibited waste into the sewerage system. This release was reported to AEPA (Ref# 430759) by the company. A written report was issued to AEPA on July 30, 2024.	Reportable- 3rd Party Release	430759
22-Jul-2024	10810-186 Street NW	Diluted flocculent (approx. 11,000L) was released into the sanitary sewer system at the EPCOR Poundmaker Transfer Station (10810-186 Street NW). EPCOR Industrial Wastewater Investigators confirmed that a hauler (Hennig Septic Services) had discharged the substance into the oil/water separator at the facility. EPCOR contracted a 3rd party company (Secure Energy) to clean, haul and dispose of the contaminants to an authorized treatment facility. There was no release of flocculent to the storm collection system. This release was reported to AEPA (Ref# 430789). A written report was issued to AEPA on July 29, 2024.	Reportable- 3rd Party Release	430789
25-Jul-2024		Hydraulic fluid (approx. 5L) was released into the sanitary collection system from an elevator system leak at the Alberta Infrastructure building (6950-113 Street NW). There was no release of hydraulic fluid to the storm collection system. This release was reported to AEPA (Ref# 430982) by the facility management company. A written report was not requested by AEPA.	Reportable- 3rd Party Release	430982
25-Jul-2024	12621-156 Street NW	A phenol formaldehyde resin (approx. 200L) was released at the Hexion Canada facility (12621-156 Street NW). A 3rd party vacuum truck (GFL Environmental) was called-in to remove contaminants from the spill site. There was no release of resin to the storm / sanitary collection system. This release was reported to AEPA (Ref# 430953) by the company. A written report was issued to AEPA on July 31, 2024.	Reportable- 3rd Party Release	430953

30-Jul-2024	3341-34 Street NW	Gasoline (approx. 5L) was released into the private storm collection system at the Esso gas bar located at 3341-34 Street NW. A 3rd party company (QM Environmental) was called-in to remove contaminants from the spill site. The release was contained within the private storm system at this facility and there was no release of gasoline to the EPCOR storm collection system. This release was reported to AEPA (Ref# 431143) by City of Edmonton – Fire Services. A written report was not requested by AEPA.	Reportable- 3rd Party Release	431143
07-Aug-2024	5607-12 Avenue SW	Animal waste contaminants (unknown volume) were released into the storm collection system (CB471408) from a private residence located at 5607-12 Avenue SW. EPCOR Industrial Wastewater Investigators confirmed that a public complaint had been received about the resident pressure washing animal skulls on their driveway. A Notice to Comply was issued to the homeowner to discontinue the release of restricted wastes into the sewerage system. This release was reported to AEPA (Ref# 431851). A written report was issued to AEPA on August 23, 2024.	Reportable- 3rd Party Release	431851
08-Aug-2024	18562-104 Avenue NW	Gasoline (< 200L) was released into the storm collection system (MH404386) from a vehicle fuel theft at Key Food Equipment Services located at 18562-104 Avenue NW. A 3rd party vacuum truck (GFL Environmental) was called to the site to clean-up the impacted storm collection system and surrounding area. A Notice to Comply was issued to the company to discontinue the release of restricted wastes into the sewerage system. This release was reported to AEPA (Ref# 431492) by the company. A written report was issued to AEPA on August 15, 2024.	Reportable- 3rd Party Release	431492
08-Aug-2024	5425-38A Avenue NW	Gasoline (approx. 200L) was released into the storm collection system from two vehicle theft incidents located at 5425-38A Avenue NW. As a precaution, EPCOR Industrial Wastewater Investigators deployed absorbent booms at the downstream Outfall #99 (OF217503). There was no visual indicators of hydrocarbons present at the outfall at the time of inspection. A 3rd party environmental company (GFL Environmental) was called-in to remove contaminants from impacted storm collection system and surrounding area. This release was reported to AEPA (Ref# 431494) by City of Edmonton – Fire Services. A written report was issued to AEPA on August 15, 2024.	Reportable- 3rd Party Release	431494
11-Aug-2024	17127-80 Avenue NW	Motor oil (approx. 1L) was released into the storm collection system (CB222254) from a private vehicle located at 17127-80 Avenue NW. EPCOR Industrial Wastewater Investigators confirmed that the motor oil had been pressure washed by a nearby resident into the storm catch basin. A 3rd party environmental company (GFL Environmental) was called-in to remove contaminants from the impacted storm collection system and surrounding area. A Notice to Comply was issued to the vehicle owner to discontinue the release of restricted waste into the sewerage system. This release was reported to AEPA (Ref# 431633) by the City of Edmonton. A written report was issued to AEPA on August 19, 2024.	Reportable- 3rd Party Release	431633
14-Aug-2024	2040-Ware Road NW	Hydraulic fluid (approx. 1L) was released into the storm collection system (CB496892) from a Collective Waste Solutions garbage truck located at 2040-Ware Road NW. EPCOR Industrial Wastewater Investigators confirmed that hydraulic fluid contaminants had not reached the downstream Windermere #11 SWMF (SWM516571). A 3rd party vactor truck (GFL Environmental) was called-in to remove contaminants from the impacted catch basin and surrounding area. A Notice to Comply was issued to the company to discontinue the release of restricted waste into the sewerage system. This release was reported to AEPA (Ref# 431781) by the company. A written report was issued to AEPA on August 20, 2024.	Reportable- 3rd Party Release	431781
19-Aug-2024	64-Avenue & 109- Street NW	Coolant (approx. 5L) was released into the storm collection system (CB228621) from a damaged City of Edmonton bus located at 64-Avenue & 109-Street NW. EPCOR equipment was mobilized to the site to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA (Ref# 431953) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3rd Party Release	431953
20-Aug-2024	1080-Wanyandi Way NW	A concrete slurry (unknown volume) was released into the storm collection system (CB419725) from a private company (Master Concrete Corp.) located at 1080-Wanyandi Way NW. A 3rd party vactor truck (First Call Energy) was called-in to remove contaminants from the impacted catch basin and surrounding area. A Notice to Comply was issued to the company to discontinue the release of prohibited waste into the sewerage system. This release was reported to AEPA (Ref# 432236) by the company. A written report was requested by AEPA.	Reportable- 3rd Party Release	432236
21-Aug-2024	12621-156 Street NW	Potable water (approx. 180L) was released into the storm collection system (CB419725) from a private company (Hexion Canada) located at 12621-156 Street NW. The company had been cleaning some of their outside tanks using potable water and the pump used for the flushing of these tanks was leaking. A 3rd party vactor truck was called-in to remove contaminants from the impacted catch basin and surrounding area. A Notice to Comply was issued to the company to discontinue the release of restricted waste (Ammonia-Nitrogen at 12.7 mg/L, Chlorinated Water and E. coli at 380 CFU/100ml) into the sewerage system. This release was reported to AEPA (Ref# 432071 / 432352) by the company. A written report was issued to AEPA on August 28, 2024.	Reportable- 3rd Party Release	432071 / 432352

		Sample results of the wastewater from the 30th Avenue storm trunkline (MH208496) located NW of 29-Avenue & 126-Street NW were		
22-Aug-2024	2832-126 Street NW	received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 1,730,000 MPN/100 mL. The 1264 hectare 30th Avenue storm basin was sampled under a requirement of EPCOR AEPA Approval to Operate 639-03-07. This storm line discharges to the North Saskatchewan River at storm Outfall #9 (OF207873) located approximately 150m North of 729-Riddle Street NW. The original sample from this location was collected on August 21, 2024. On August 24th an obstructed sanitary main line at the intersection of 19-Avenue & 48-Street NW was identified as surcharging into the storm collection system. This surcharge was identified as the cause of the elevated E.coli levels in the storm collection system. EPCOR equipment was mobilized to the site and removed the obstruction, restoring flow to the downstream sanitary system and stopping the release of untreated wastewater into the storm collection system. EPCOR will continue to monitor the 30th Avenue storm sewer basin, and work is ongoing to complete additional repairs to the storm and sanitary collection system. This release was reported to AEPA (Ref# 432141). A written report was issued to AEPA on August 30, 2024.	Reportable- Internal	432141
23-Aug-2024	75-Street & Whitemud Drive NW	Gasoline (approx. 50L) was released into the storm collection system (CB233394) from a damaged commercial vehicle (Englobe Corp.) located at 75-Street & Whitemud Drive NW. Due to a recent rainfall, EPCOR Industrial Wastewater Investigators did not observe any contaminants in the storm catch basins near the spill site. The investigators traced the storm line to Mill Creek Outfall# 196 (OF385992) and did not detect any fuel residue at the outfall. As a precaution, the investigators placed absorbent booms downstream of the outfall. This release was reported to AEPA by EPCOR (Ref# 432171) and by the company (Ref# 432179). A written report was requested by AEPA. This report will be issued to AEPA by the company	Reportable- 3rd Party Release	432171
23-Aug-2024	9502-86 Street NW	Styrofoam pellets (unknown volume) were released into a catch basin (CB581401) by a private contractor (Wilkinson Lucas Ltd.) located at 9502-86 Street NW. EPCOR Industrial Wastewater Investigators confirmed that the catch basin at this location releases downstream into the combined sewer system. A 3rd party vactor truck was called-in to remove contaminants from the impacted catch basin and surrounding area. A Notice to Comply was issued to the contractor to discontinue the release of prohibited waste (Styrofoam) into the sewerage system. This release was reported to AEPA (Ref# 432167) by the City of Edmonton. A written report was issued to AEPA on August 27, 2024.	Reportable- 3rd Party Release	432167
25-Aug-2024	3611-145 Avenue NW	Gasoline (approx. 50L) was released into a private storm catch basin from a private vehicle fuel theft incident at 3611-145 Avenue NW. A 3rd party vacuum truck (GFL Environmental) was called-in to remove contaminants from the impacted storm collection system (MH299742) and surrounding area. This release was reported to AEPA (Ref# 432196) by City of Edmonton – Fire Services. A written report was not requested by AEPA.	Reportable- 3rd Party Release	432196
03-Sep-2024	2815-109A Street NW	Sample results of the wastewater from a private storm manhole located at a residential condominium complex (2815-109A Street NW) were received and reviewed by EPCOR Monitoring & Compliance. The result exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 54,000 CFU/100 mL. The original sample from this location was collected on August 27, 2024 by EPCOR Industrial Wastewater Investigators. A Notice to Comply was issued to the property management company to identify and repair the cross-connection. This release was reported to AEPA (Ref# 432520). A written report was issued to AEPA on September 10, 2024.	Reportable- 3rd Party Release	432520
03-Sep-2024	4950-101 Avenue NW	Untreated wastewater (unknown volume) was released into the storm collection system from a sanitary line surcharge at a business complex (4950-101 Avenue NW). The property manager for the complex confirmed that the surcharge was first noticed on August 29, 2024. EPCOR Industrial Wastewater Investigators observed untreated wastewater surcharging from a private sanitary manhole and releasing into a nearby private storm catch basin. The property management company called-in a 3rd party vacuum truck to release the sanitary line blockage (grease) and clean the surrounding area. The untreated wastewater that entered the storm collection system would have discharged thru storm Outfall# 105 (OF268790). A Notice to Comply was issued to the property management company to discontinue the release of prohibited waste to the sewerage system. This release was reported to AEPA (Ref# 432536) by the property management company. A written report was issued to AEPA on September 3, 2024.	Reportable- 3rd Party Release	432536

04-Sep-2024	95-Avenue & Riverside Crescent NW	Sample results of the wastewater from a storm manhole (MH240560) located at 95-Avenue & Riverside Crescent NW were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 330,000 CFU/100 mL. The original sample from this location was collected on August 27, 2024 by EPCOR Industrial Wastewater Investigators. EPCOR will initiate further investigations into this event to determine the source of the cross-connection at this location. EPCOR will work with impacted properties to identify and correct sanitary cross-connections to the storm collection system. The release was reported to AEPA (Ref# 432581). A written report was issued to AEPA on September 11, 2024.	Reportable- Internal	432581
04-Sep-2024	5611-128 Avenue NW	Diesel exhaust fluid (approx. 5L) was released from a leaking fill hose at the Kennedale fuel station (5611-128 Avenue NW). The release was cleaned-up by an EPCOR Wastewater Collection crew using absorbent material from a spill kit. There was no release of diesel exhaust fluid to the storm / sanitary collection system. The release was reported to AEPA (Ref# 432685) by the City of Edmonton. A written report was issued to AEPA on September 12, 2024.	Reportable- 3rd Party Release	432685
04-Sep-2024	1516-Blackmore Way SW	EPCOR contractor (PME Inc.) notified EPCOR about a turbidity exceedance at Outfall# 270 (OF376819) located NE of 1516-Blackmore Way SW. This exceedance was caused by turbid water making its way under the turbidity isolation curtain during excavation activity along the bank of Blackmud Creek near the construction site. Construction activity was stopped immediately and the isolation curtain was sealed and water pumping began within the isolation. After 2 hours, the turbidity had returned below the allowable threshold limits and contractor was able to proceed with work. This release was reported to AEPA (Ref# 432600) by the contractor. A written report was issued to AEPA on September 11, 2024.	Reportable- 3rd Party Release	432600
05-Sep-2024	186-Street & Stony Plain Road NW	Coolant (approx. 1L) was released from a vehicle accident at 186-Street & Stony Plain Road NW. The release was cleaned-up by City of Edmonton – Fire Services using absorbent material from a spill kit. EPCOR Industrial Wastewater Investigators confirmed that there was no release of coolant to the storm / sanitary collection system. The release was reported to AEPA (Ref# 432603) by City of Edmonton – Fire Services. A written report was issued to AEPA on September 11, 2024.	Reportable- 3rd Party Release	432603
07-Sep-2024	17-Street & Ellerslie Road SW	EPCOR Industrial Wastewater Investigators responded to a report of a vehicle accident at a natural pond located near 17-Street & Ellerslie Road SW. The investigators confirmed that the vehicle had been removed from the accident site and no sheen / odours were observed in the pond. This pond is not connected to the EPCOR storm collection system. This event was reported to AEPA (Ref# 432716). A written report was not requested by AEPA.	Reportable- 3rd Party Release	432716
08-Sep-2024	7055-Argyll Road NW	Untreated wastewater (unknown volume) was released into the storm collection system (CB232199) from a sanitary line surcharge at the Pure Casino facility (7055-Argyll Road NW). EPCOR Wastewater Collection equipment was mobilized to the site and released the sanitary line blockage (grease) and cleaned the impacted storm collection system. This release was reported to AEPA (Ref# 432778) by the facility. A written report was issued to AEPA on September 8, 2024.	Reportable- 3rd Party Release	432778
09-Sep-2024	9759-92 Street NW	Untreated wastewater (unknown volume) was released thru an interconnection (IC-266) located at 9759-92 Street NW. EPCOR staff responded to an alarm signal at the interconnection and confirmed that a blockage (a build-up of sanitary solids) had occurred in the downstream combined sewer pipe (PIP6606). This blockage released a mixture of untreated wastewater / stormwater thru the interconnection into the nearby storm collection system. EPCOR Wastewater Collection equipment was mobilized to the site and released the blockage. The untreated wastewater from the interconnection would have released thru storm Outfall# 256 (OF244320). This release was reported to AEPA (Ref# 432847). A written report was issued to AEPA on September 17, 2024.	Reportable- Internal	432847
	85-Street & Conners Road NW	Coolant (approx. 10L) was released from a City of Edmonton bus accident at 85-Street & Conners Road NW. The release was cleaned-up by the City of Edmonton using absorbent material from a spill kit. EPCOR Industrial Wastewater Investigators confirmed that the release at this location would have entered the combined sewer system. This release was reported to AEPA (Ref# 432998) by the City of Edmonton. A written report was issued to AEPA on September 18, 2024.	Reportable- 3rd Party Release	432998
16-Sep-2024	2/U/-MIII WOODS ROAD	Glycol (approx. 10L) was released into the sanitary sewer system from the mechanical room at the J. Percy Page School (2707-Mill Woods Road NW). EPCOR Industrial Wastewater Investigators confirmed that there was no release of glycol to the storm collection system. This release was reported to AEPA (Ref# 433074) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3rd Party Release	433074


18-Sep-2024	209-Desrochers Boulevard SW	Potable water / charred solids (unknown volume) was released into the storm collection system from firefighting activities at 209- Desrochers Boulevard SW. EPCOR Industrial Wastewater Investigators tested the Total Chlorine levels at a downstream storm manhole (MH426622) and the chlorine levels were measured at 0.34 ppm. The Investigators placed dechlorination pucks in the manhole to remove chlorine residue. The investigators confirmed that there was no impact to the downstream Desrochers #1 SWMF (SWM524349). This release was reported to AEPA (Ref# 433141) by City of Edmonton – Fire Services. A written report was not requested by AEPA.	Reportable- 3rd Party Release	433141
18-Sep-2024	20512-58 Avenue NW	A concrete slurry (unknown volume) was released into a storm catch basin (CB411216) by Concept Concrete located at 20512-58 Avenue NW. The original release occurred around August 18, 2024 and EPCOR Industrial Wastewater Investigators were notified on September 18, 2024. Due to the time delay, the investigators did not observe any evidence of contaminants inside the catch basin. A Notice to Comply was issued to the concrete company to discontinue the release of prohibited waste to the sewerage system. This release was reported to AEPA (Ref# 433200) by the City of Edmonton. A written report was issued to AEPA on October 1, 2024.	Reportable- 3rd Party Release	433200
20-Sep-2024	12407-106 Avenue NW	Potable water (approx. 0.5 cubic meters) was released into the storm collection system (CB259843) by a TC Infrastructure Services hydro vac located at 12407-106 Avenue NW. EPCOR Industrial Wastewater Investigators added dechlorination pucks to the impacted catch basin to remove any chlorine residue. A TC infrastructure representative confirmed that they will be speaking to their staff about not releasing potable water to the EPCOR storm collection system without prior approval. This release was reported to AEPA (Ref# 433295) by the company. A written report was not requested by AEPA.	Reportable- 3rd Party Release	433295
23-Sep-2024	11219-58 Avenue NW	Tiling grout (unknown volume) was released onto an alleyway by a resident located at 11219-58 Avenue NW. The release was contained on the alleyway and was cleaned up by a City of Edmonton sweeper. EPCOR Industrial Wastewater Investigators confirmed that there was no release of grout to the storm / sanitary collection system. This release was reported to AEPA (Ref# 433318) by the City of Edmonton. A written report was issued to AEPA on September 23, 2024.	Reportable- 3rd Party Release	433318
24-Sep-2024	9929-Jasper Avenue NW	Coolant (approx. 1L) was released into a storm catch basin (CB564178) from a City of Edmonton bus located at 9929-Jasper Avenue NW. EPCOR Industrial Wastewater Investigators confirmed that the coolant was contained within the catch basin sump. EPCOR Wastewater Collection equipment was mobilized to the site to remove contaminants from the impacted catch basin and surrounding area. There was no release of coolant to the storm collection system. This release was reported to AEPA (Ref# 433431) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3rd Party Release	433431
24-Sep-2024	6900-85 Street NW	Hydraulic fluid (approx. 30L) was released from a City of Edmonton lawnmower located near 6900-85 Street NW. EPCOR Industrial Wastewater Investigators confirmed that the hydraulic fluid was contained on an asphalt roadway. The spill site was cleaned-up by a City of Edmonton street sweeper. There was no release of hydraulic fluid to the storm / sanitary collection system. This release was reported to AEPA (Ref# 433399) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3rd Party Release	433399
01-Oct-2024	11403-84 Street NW	Untreated wastewater (unknown volume) was released thru an interconnection (IC-78) located at 11403-84 Street NW. EPCOR staff responded to an alarm signal at the interconnection and confirmed that a blockage (a build-up of sanitary solids) had occurred in the downstream combined sewer pipe (PIP31904). This blockage released a mixture of untreated wastewater / stormwater thru the interconnection into the nearby storm collection system (MH263708). EPCOR Wastewater Collection equipment was mobilized to the site and released the blockage. The untreated wastewater from the interconnection would have discharged thru storm Outfall# 56 (OF261549). This release was reported to AEPA (Ref# 433687). A written report was issued to AEPA on October 7, 2024.	Reportable- Internal	433687
06-Oct-2024	4827-17 Avenue NW	Gasoline (approx. 5L) was released into the storm collection system (CB203899) from firefighting activities at a private residence located at 4827-17 Avenue NW. EPCOR Industrial Wastewater Investigators placed an absorbent boom inside the impacted catch basin to remove any fuel residue. The wastewater from this incident would have discharged thru storm Outfall# 9 (OF207873). This release was reported to AEPA (Ref# 433921) by City of Edmonton – Fire Services. A written report was not requested by AEPA.	Reportable- 3rd Party Release	433921
06-Oct-2024	6803-72 Avenue NW	A nitric acid solution (approx. 800L) was released into the storm collection system (MH231819) from a damaged tote at Reinhold Industries Ltd. (6803-72 Avenue NW). A 3rd party vacuum truck was called-in to remove acid residue from the impacted storm catch basin. EPCOR Industrial Wastewater Investigators confirmed that a rainfall event after the release would have flushed the acid solution thru the EPCOR storm collection system. The wastewater from this incident would have discharged thru storm Outfall# 196 (OF385992). A Notice to Comply was issued to the company to discontinue the prohibited or restricted waste into the sewerage system. This release was reported to AEPA (Ref# 434079) by the company. A written report was issued to AEPA on October 16, 2024.	Reportable- 3rd Party Release	434079


		Diesel fuel (< 40L) was released into a storm catch basin (MH211589) from a vehicle fuel theft at U-Haul Moving & Storage located at 45-Avenue & 95-Street NW. EPCOR Industrial Wastewater Investigators confirmed that the fuel was contained within the catch basin sump. A 3rd party vacuum truck (GFL Environmental) was called to the site to clean-up the impacted storm catch basin and surrounding area. This release was reported to AEPA (Ref# 433971) by the company. A written report was issued to AEPA on October 15, 2024.	Reportable- 3rd Party Release	433971
08-Oct-2024		Untreated wastewater (unknown volume) was released into the storm collection system (CB346260) from a combined sewer line surcharge at a residential building complex located at 10138-123 Street NW. During construction at this site, a contractor (Synergy Project Ltd.) observed that untreated wastewater had entered the building sumps and elevator pit. The contractor pumped the accumulated wastewater inside the building complex into a nearby storm catch basin (CB346260). EPCOR equipment was mobilized to the site to release the blockage and flush contaminants from the storm line. The contractor called-in a 3rd party vacuum truck to remove contaminated wastewater from the building sumps and elevator pit. The untreated wastewater that entered the storm collection system would have discharged thru storm Outfall# 31 (OF379692). This release was reported to AEPA (Ref# 433999) by the contractor. A written report was issued to AEPA on October 15, 2024	Reportable- 3rd Party Release	433999
13-Oct-2024	16110-116 Avenue NW.	A liquid sucrose solution (approx. 200L) was released into the storm collection system (MH254750) at Saputo Inc. located at 16110-116 Avenue NW. During a delivery of the sucrose solution, the level sensor on a storage tank malfunctioned and the solution overflowed into a nearby private storm catch basin. A 3rd party vacuum truck was called-in to remove contaminants from the impacted catch basin and surrounding area. A Notice to Comply was issued to the company to discontinue the release of restricted waste into the sewerage system. This release was reported to AEPA (Ref# 434173) by the company. A written report was issued to AEPA on October 15, 2024.	Reportable- 3rd Party Release	434173
16-Oct-2024		Petroleum hydrocarbons (unknown volume) were released into Gold Bar Creek (2504-76 Avenue NW) from a City of Edmonton contractor. During excavation activity at a construction worksite, the contractor (Alberco Construction Ltd.) observed hydrocarbon contaminants coming from the soil on the south bank of the creek. The contractor removed the contaminated soil and covered over the downstream area. This release was reported to AEPA (Ref# 434496) by the City of Edmonton. A written report was issued to AEPA on October 30, 2024.	Reportable- 3rd Party Release	434496
22-Oct-2024	1214-101 Street SW	Diesel fuel (approx. 50-100L) was released into the storm collection system (MH429942) from a vehicle fuel theft at Royal Pizza located at 1214-101 Street SW. A 3rd party vacuum truck (GFL Environmental) was called-in to clean-up the impacted storm collection system and surrounding area. The diesel fuel contaminants that entered the storm collection system would have discharged thru storm Outfall# 290 (OF398556). This release was reported to AEPA (Ref# 434460). A written report was issued to AEPA on October 30, 2024.	Reportable- 3rd Party Release	434460
22-Oct-2024	8016-161 Street NW	Sample results of the wastewater from a storm manhole (MH238723) located at 8016-161 Street NW were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 210,000 CFU/100 mL. The original sample from this location was collected on October 17, 2024 by EPCOR Industrial Wastewater Investigators. EPCOR will initiate further investigations into this event to determine the source of the cross-connection at this location. EPCOR will work with impacted properties to identify and correct sanitary cross-connections to the storm collection system. This release was reported to AEPA (Ref# 434439). A written report was issued to AEPA on October 29, 2024.	Reportable- 3rd Party Release	434439
23-Oct-2024	11710-87 Avenue NW	Sample results of the wastewater from a storm manhole (MH24738) located at 11710-87 Avenue NW were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for E. coli at 2,500,000 CFU/100 mL. The original sample from this location was collected on October 23, 2024. A Notice to Comply was issued to the property management company to discontinue the release of matter that is not permitted (untreated wastewater) into the storm sewer system. This release was reported to AEPA (Ref# 434495). A written report was issued to AEPA on October 30, 2024.	Reportable- 3rd Party Release	434495
	89-Avenue & 112-	Glycol (approx. 36L) was released into the sanitary collection system from the University of Alberta – Hub Mall located at 89-Avenue & 112-Street NW. EPCOR Industrial Wastewater Investigators confirmed that the glycol was release into a floor drain from a faulty relief valve in the mechanical room at this facility. This release was reported to AEPA (Ref# 434496) by the University of Alberta. A written report was issued to AEPA on October 31, 2024.	Reportable- 3rd Party Release	434496

28-Oct-2024	5545-89 Street NW	Sample results of the wastewater from a private storm manhole located at Edmonton Exchanger (5545-89 Street NW) were received and reviewed by EPCOR Monitoring & Compliance. The results exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses" for Nickel at 0.0868 mg/L and Zinc at 0.359 mg/L. The original sample from this location was collected on October 16, 2024. A Notice to Comply was issued to the company to discontinue the release of restricted wastes into the storm sewer system. This release was reported to AEPA (Ref# 434951) by the company. A written report was issued to AEPA on November 6, 2024.	Reportable- 3rd Party Release	434951
30-Oct-2024	19-Avenue & 209A- Street NW	Tack oil (approx. 5L) was released from a private contractor (Park Paving) vehicle into a private storm catch basin located at 19-Avenue & 209A-Street NW. EPCOR Industrial Wastewater Investigators confirmed that the tack oil was contained within the catch basin sump. A 3rd party vacuum truck (Canessco Services Inc.) was called to the site to clean-up the impacted catch basin and surrounding area. There was no release of tack oil to the storm collection system. This release was reported to AEPA (Ref# 434758) by the contractor. A written report was issued to AEPA on November 8, 2024.	Reportable- 3rd Party Release	434758
30-Oct-2024	4950-101 Avenue NW	Untreated wastewater (unknown volume) was released into the storm collection system from a sanitary line surcharge at a business complex (4950-101 Avenue NW). The property manager for the complex confirmed that the surcharge was first noticed on October 30, 2024, but was not reported to EPCOR until November 4th. The property management company called-in a 3rd party vacuum truck to release the sanitary line blockage (grease) and clean the surrounding area. The untreated wastewater that entered the storm collection system would have discharged thru storm Outfall# 105 (OF268790). This release was reported to AEPA (Ref# 434890) by the property management company. A written report was issued to AEPA on November 4, 2024.	Reportable- 3rd Party Release	434890
03-Nov-2024	2052-74 Street NW	An unknown volume of untreated wastewater was released into the storm collection system as a result of a blockage in the sanitary system located at 2052-74 Street NW. An odour compliant resulted in the location of the blockage in the sanitary system which was confirmed to be actively releasing from the double barrel into the storm system. EPCOR Wastewater Collection equipment was mobilized to the site and released the blockage discontinuing the release to the storm system. This release was reported to AEPA (Ref# 434863). A written report was issued to AEPA on November 7, 2024.	Reportable- Internal	434863
07-Nov-2024	6609 Gateway Blvd NW	Sample results obtained from a 24-hour combined sewer composite sample from City of Edmonton's SW yard located at 6609 Gateway Blvd NW were reviewed by the City of Edmonton. The results of the sample exceeded By-law 19627 Appendix B Restricted Wastes Applicable to Sanitary and Combined Sewers for Hydrocarbons at 296.2 mg/L (limit 100 mg/L) and sulphide at 12 mg/L (limit 3 mg/L). This release was reported to AEPA (Ref# 434979) by the City of Edmonton. A written report was issued to AEPA on November 7, 2024.	Reportable- 3rd Party Release	434979
08-Nov-2024	9604 Jasper Avenue	Less than 5 L of antifreeze was releases into a storm catch basin CB384891 from a City of Edmonton bus located at 9604 Jasper Avenue. Edmonton Fire Department was on site and removed contaminants from the impacted catch basin and surrounding area. City of Edmonton employees was on scene and cleaned up the remainder of the spill. This release was reported to AEPA (Ref# 435009) by the City of Edmonton. A written report was issued to AEPA on November 13, 2024.	Reportable- 3rd Party Release	435009
08-Nov-2024	4803 - 74 Avenue NW.	Approximately 130 L of gasoline was released into the storm collection system manholes MH233240 from a vehicle located at 4803 - 74 Avenue NW. Investigators observed a trail of absorbent leading from a truck to the private catch basin and visible product in the catch basin up to the lead. Investigators checked the downstream manhole MH233238 and observed visible product. Manhole MH233237 further downstream also contained visible product. Investigators installed a boom in downstream manhole MH233237. A sample was collected from the private catch basin for AEPA parameters, Oil and Grease, hydrocarbons and BTEX. Business was informed to call a 3rd party to clean the impacted private catch basin and the private line leading to manhole MH233240 and to report the release to AEPA. This release was reported to AEPA (Ref# 435019) by the contractor. A written report was issued to AEPA on November 8, 2024.	Reportable- 3rd Party Release	435019
10-Nov-2024	3727 Cameron heights	Approximately 10 L of hydraulic oil was released into a catch basin CB468921 located at 3727 Cameron heights place in to catch basin. Contamination had not left the catch basin and was contained. A 3rd party vacuum truck was called-in to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA (Ref# 435077) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3rd Party Release	435077

15-Nov-2024	8552 Roper Rd NW	Approximately 30 L of gasoline was released from a damaged fuel tank located at 8552 Roper Rd NW. The fuel tank was drilled into sometime between the evening of November 14 and morning of November 15 and release was observed at 10:30 on November 15. It is estimated that 5 - 10 L of gasoline made its way into the private collection system. Investigators moved downstream to last private storm manhole before property connects to 900 mm EPCOR mainline and observed a steady flow in manhole leaving property. 900mm mainline discharges to NSR at outfall OF196. Sample was collected from private storm manhole and outfall OF196. A 3rd party vactor truck was called-in to remove contaminants from the impacted catch basin and surrounding area. This release was reported to AEPA (Ref# 435273) by the contractor. A written report was not requested by AEPA.	Reportable- 3rd Party Release	435273
17 Nov 2024	30 Avenue and 116 Street NW	A member of the public notified EPCOR of sewer odour in the neighbourhood of 30 Avenue and 116 Street NW, Edmonton, AB. Inspection findings indicate there is a source of untreated waste water entering the storm system near the intersection of Westbrook Drive and 119 Street. Further bacterial sampling has been completed to narrow down the source contributing to the contamination. Once area has been narrowed down televising and dye testing of the storm lines in the area will be scheduled. This release was reported to AEPA (Ref# 435402) by EPCOR Monitoring & Compliance on November 20, 2024. A written report was issued to AEPA on November 26, 2024.	Reportable- 3rd Party Release	435402
19-Nov-2024	403 McConachie Way NW	Approximately 100 L of diesel fuel was released into a private storm drainage system located at 403 McConachie Way NW and entered the EPCOR drainage system. The spill was contained and cleaned up before impacting the downstream McConachie stormwater management facility SWM444059. When EPCOR Industrial Wastewater Investigators arrived onsite the The contractor was still on site cleaning up the diesel from the private storm system. Visible evidence (globules) of diesel, and a strong odour were found at the first EPCOR manhole downstream. This release was reported to AEPA (Ref# 435373) by the contractor. A written report was not requested by AEPA.	Reportable- 3rd Party Release	435373
22-Nov-2024	13003-56 Street NW	Approximately 10 L of hydraulic oil entered a sump at the City of Edmonton Kennedale Traffic Field Operations Facility located at 13003-56 Street NW. Investigators contacted the City of Edmonton and it was determined that 10L of hydraulic fluid entered the primary stage of the sump within one of the maintenance garages and no material exited the sump and the spill did not enter the drainage system. A 3rd party was called in to remove hydraulic oil. This release was reported to AEPA (Ref# 435473) by the City of Edmonton and a written report was provided by the City of Edmonton.	Reportable- 3rd Party Release	435473
27-Nov-2024	11159 73 Ave NW	EPCOR Monitoring and Compliance was alerted to the possible dumping of RV waste into a manhole MH224905 located at 11159 73 Ave NW based on evidence found by and EPCOR line televising crew. Black sludge with strong odour consistent with anoixic mud or sanitary wastewater was located in the manhole. Based on a number of observations, this may be the result of someone repeatedly dumping at this location. Currently there is no indication as to who may be responsible. Sample results exceeded Bylaw 19627 Appendix C and Bylaw 18093 Schedule B "Restricted Wastes Applicable to Storm Sewers and Watercourses for ammonia, total phosphorus and E. coli - all of which are consistent with domestic wastewater. EPCOR has already flushed the impacted portion of the stormwater system. Letters are being sent out to surrounding residents to educate them, and there is the possibility of further action if the people responsible are identified. This release was reported to AEPA (Ref#435650). A written report was issued to AEPA on December 2, 2024.	Reportable- 3rd Party Release	435650
30-Nov-2024	4205 76 Avenue	An unknown volume of potable water and charred solids were released into the storm collection system from firefighting activities at 4205 76 Avenue. Fire was located at an industrial site and large volume of water used. Potable water from fire fighting activities were observed in the gutter extending approximately six blocks west of site along the south gutter, north of the property, entering various catch basins. No sheen, or odour observed onsite or at the release point catch basin MH233163 by investigators. A sample was collected from manhole MH233163 as well as Mill Creek separator as water did run off into Mill Creek. The incident was also reported to Environment and Climate Change Canada (ECCC) by Edmonton Fire and Rescue Services due to runoff reaching Mill Creek. EPCOR provided updates to ECCC. This release was reported to AEPA (Ref# 435684) by the City of Edmonton. A written report was not requested by AEPA.	Reportable- 3rd Party Release	435684

09-Dec-2024	8343 - 120 Street NW	A member of the public notified EPCOR of sewer odour in their garage from storm line. EPCOR personnel checked and identified unusual flow patterns and odours in the storm sewer indicating possible presence of untreated wastewater. EPCOR continued the investigation and sampled storm MH242795 for E.coli - there was insufficient flow present to sample for additional parameters. This storm MH discharges approximately 500m downstream into the North Saskatchewan River at Outfall 23C located approximately 200m west of 8327 - Saskatchewan Drive NW. As the outfall was inaccessible due to safety concerns, the first accessible upstream storm manhole, MH242245, was also sampled on December 10, 2024, for the six approval parameters. Preliminary findings indicate that one or more of the residential customers in the Windsor Park neighbourhood may have sanitary services incorrectly connected to the storm sewer collection system. Further bacteriological sampling, televising, and dye testing of the storm lines in the area are currently being scheduled to narrow down the source of the untreated wastewater. This release was reported to AEPA (Ref# 436151). A written report was issued to AEPA on December 17th, 2024.	Reportable- 3rd Party Release	436151
1 13-1200-2024	3486 34 St NW Edmonton	A turbidity exceedance of the provincial short-term Total Suspended Solids (TSS) guideline (i.e., instantaneous 25 mg/L increase over background) resulted during the rehabilitation of Outfall 271 located approximately at 3486 34 St NW Edmonton, when sediment-laden water overflowed the isolation after a grey water pump was shut off for the day. The exceedance occurred at approximately 17:30 and concentrations of TSS had returned to background levels by 08:00 on December 14, 2024. AEPA (Ref#436124) was notify of the exceedance. A written report was issued to AEPA on December 14th, 2024.	Reportable- Internal	436124
17-Dec-2024		Suspected release of coolant to storm collection system at Edmonton Valley Zoo. Monitoring and Compliance called complainant back for more details. No one saw a vehicle leaking it was just their best guess due to color of the substance. Upon further investigation Edmonton Valley Zoo staff realized they had spilled beet juice when making a beet popsicle for the elephants. No EPCOR assets impacted. This release was reported to AEPA by the City of Edmonton employees. (Ref# 436194). A written report was not requested by AEPA.	Reportable- 3rd Party Release	436194
1 12-Dac-2024	Drive	An unknown volume of untreated wastewater release into the storm collection system was identified during a review of the televising footage from the inspection. Personnel sampled storm MH221403 for the 6 AEPA parameters. This storm line discharges approximately 4 km downstream into the North Saskatchewan River at Outfall 18, located 200 meters SW of 115 - Laurier Drive. Preliminary findings indicate that one or more of the residential customers in the Thorncliff neighbourhood may have sanitary services incorrectly connected to the storm sewer collection system. Further bacteriological sampling and dye testing of the storm lines in the area are currently being scheduled to narrow down the source of the untreated wastewater. This release was reported to AEPA by the Monitoring and Compliance employees. (Ref# 436215). A written report was issued to AEPA on December 23, 2024.	Reportable- 3rd Party Release	436215
19-Dec-2024	2959 Parsons Road NW	Release of approximately 500kgs of mustard into sanitary sewer system. Ventura foods was processing mustard over night and at around 23:45 a pipe connecting the production line to a holding tank had a coupler come loose causing the pipe to detach and released mustard onto the floor. The pipe was releasing for approximately six minutes before the production line was shut down. The holding tank has a low level and high level alarm but there are no sensors on the pipes. Goldbar WWTP was notified of the release at 10:48 on Dec 20,2024. The operator advised that the plant did not experience any issues overnight but took note of the release. This release was reported to AEPA by the Ventura Foods employees (Ref# 436289). A written report was issued to AEPA on December 28, 2024.	Reportable- 3rd Party Release	436289

2024 Annual Wastewater Treatment Plant Report

Table 1: 2024 Gold Bar WWTP Performance

										T.	ABLE 3: 20)24 Go	ld Bar WV	VTP Perfor	mance											
	Flows (ML)						BOD ₅ CBOD ₅ TP (mg/L) (mg/L) (mg P/L)							NH ₃ TKN (mg N/L) (mg N/L)				NO ₂ +NO ₃ .) (mg N/L)			Chloride E. coli (mg/L) Counts/100 mL		Total Digested			
	Month	Raw Outfall MPW Outfall El	PEPS Outfall 10	Raw Outfall Ou	Outfall 10 F	aw Outfall 0	Outfall EPEPS	Outfall 10	Raw	Outfall 30 20	EPEPS Ou	tfall 10	Raw Outfa	Outfall EPEPS	Outfall 10	Raw Ou	otfall Outfall EPE	Outfall 10	Raw Outfall Out	Outfall 10 Raw	Outfall Outfal 20	Outfall 10 Raw	Outfall Outfal	Outfall Raw	30 20	Outfall Sludge 10 (ML)
January	Avg/Geomean Min Max	272.0 0.9 11.3 0.0 249.8 0.0 8.6 0.0 347.8 28.1 12.5 0.0	0.0 259.8 259.8 0.0 237.9 237.9 0.0 308.6 308.6	7.5 7.6 7.4 7.6	7.5 7.4	324 192 260 192 520 192		3.5 3.5 2.6 2.6	321 3 250	179 – 179 –	2.	7 2.7 2.7	8.34 6.4 7.54 6.4 9.42 6.4	18 18	0.28 0.28 0.23 0.23	39.8 31.8 43.1	32.1 32.1	3.52 3.5 1.22 1.2 6.69 6.6	2 54.7 43.7 2 49.7 43.7	4.6 0.0	.04 0.05 - .01 0.05 -	- 8.00 11 - 6.1 72.	2 447 · · · · · · · · · · · · · · · · · ·	119 74.1	2.1 1.9 2.0 1.9	- 11 - 3 73.0 - 120
February	Avg/Geomean Min	273.2 0.2 10.7 0.0 264.2 0.0 7.0 0.0	0.0 262.3 262.3 0.0 252.9 252.9	7.4 7.7 7.3 7.7	7.5 7.3	336 92 110 92		3.5 3.5 2.2 2.2	339	267 - 267 -	2.	7 2.7	8.31 7.5 6.33 7.5	52	0.34 0.34 0.32 0.32 0.18 0.18	39.2	39.9	3.94 3.9 2.08 2.0	4 52.6 48.7	5.0 < 0.0 3.2 < 0.0	.01 0.02 -	- 7.51 11 - 5.59 87.	0 161 · · · · · · · · · · · · · · · · · ·	119 96.0	1.8 3.2 1.8 3.1	- 9.6 - 5 68.6
March	Max Avg/Geomean Min	290.6 5.4 12.5 0.0 290.8 9.0 9.1 0.0 272.1 0.0 6.8 0.0	0.0 279.2 279.2 0.0 272.7 272.7 0.0 261.3 261.3	7.6 7.7 7.4 7.5 7.4 7.3	7.6 7.5 7.3	480 92 388 110 160 83	 	4.9 4.9 5.1 5.1 1.9 1.9	9 421 1 334 9 207	267 157 127	3.	3 3 .1 3.1 2 < 2	10.4 7.5 8.47 6.5 7.33 4.9		0.98 0.98 0.38 0.38 0.21 0.21	43.3 35.7 27.1	39.9 35.2 31.2	5.39 5.3 5.39 5.3 2.84 2.8	1 1 1	6.5 < 0.0 6.7 < 0.0 4.1 < 0.0	.01 0.02 - .01 0.11 - .01 < 0.01 -	10.0 13 7.75 13 5.21 83.	8 161 · · · · · · · · · · · · · · · · · ·	174 135 98	1.9 3.3 2.3 1.6 2.2 0.9	- 24 - 11.1 - 4 76.9
April	Max Avg/Geomean Min	351.9 52.5 12.2 0.0 280.9 4.7 11.2 0.0 264.1 0.0 10.1 0.0	0.0 293.1 293.1 0.0 265.0 265.0 0.0 253.5 253.5	7.5 7.7 7.4 7.5 7.3 7.3	7.6 7.4 7.3	516 148 384 116 268 82		10.5 10.5 6.1 6.1 4.1 4.1	5 446 1 349 1 299	183 – 121 – 110 –	3.	5 5 .0 3.0 2 < 2	9.53 8.0 8.48 7.3 6.00 4.9	07 33 94	0.74 0.74 0.42 0.42 0.32 0.32	42.1 42.0 24.5	40.6 40.5 27.2	9.32 9.3 3.79 3.7 0.80 0.8	2 59.2 48.5 9 54.7 45.2 0 39.3 30.4	10.6 < 0.0	01 0.41 - 01 0.20 - 01 0.02 -	9.94 30 8.65 91. 6.47 74.	5 458 4 161 4 81.5	267 : 98.8 83.6	2.4 2.3 1.4 1.0 1.3 1.0	- 32 - 8.8 - 3 72.5
	Max Avg/Geomean	455.8 134.2 12.8 0.0 326.3 25.5 11.4 0.0	0.0 310.2 310.2 0.0 289.4 289.4	7.6 7.7 7.5 7.6	7.6 7.5	496 150 369 83		8.9 8.9 4.9 4.9	428	132 -	3.	4 4	9.4 9.7 8.13 5.6	72	0.32 0.32 0.74 0.74 0.39 0.39	46.5 37.5	53.7	7.16 7.1 2.40 2.4	6 67.2 60.0 0 56.5 42.4	7.6 < 0.0	01 0.37 - 09 0.13 -	- 10.0 14 - 11.0 83.		130 88	1.6 1.1 2.0 1.2	- 21 - 10.2 - 1 76.9
May	Min Max Avg/Geomean	276.3 0.0 9.8 0.0 723.2 376.9 12.7 1.0 331.2 27.4 11.9 0.0	0.0 344.5 344.5 0.0 291.9 291.9	7.3 7.4 7.6 7.9 7.6 7.6	7.2 7.8 7.5	764 112 376 90.5		2.6 2.6 11.1 11.1 5.3 5.3	154 1 443 3 292	190 - 161 -	<	2 < 2 4 4 2 3.2	4.33 3.7 10.2 8.8 7.50 6.0	72 30 04	0.09 0.09 0.99 0.99 0.40 0.40	42.8	49.9 35.4	0.61 0.6 6.33 6.3 2.91 2.9	3 106 72.5	1.1 < 0.0 8.1 0.3 4.8 < 0.0	39 0.24 -	- 5.48 46. - 14.2 97. - 10.3 83.	2 109	70 98 95.2	3.8 2.3 2.7 1.2	- 42 - 12.2
June	Min Max Avg/Geomean	282.7 0.0 10.5 0.0 633.8 337.9 12.9 0.4 313.0 14.5 12.1 0.0	0.0 265.7 265.7 0.0 336.5 336.5 0.0 286.4 286.4	7.3 7.4 7.7 7.8 7.6 7.6	7.4 7.8 7.6	268 44.8 636 188 416 74		2.6 2.6 9.2 9.2 4.5 4.5	179 2 368 5 303	53 – 413 – 149 –	2.	2 2 5 5 5 2.5	5.12 3.1 9.28 9.8 7.83 5.8	11 30 35	0.26 0.26 0.78 0.78 0.37 0.37	15.6 42.7 32.3	20.5 48.9 34.9	0.22 0.2 5.08 5.0 1.35 1.3	8 62.6 57.8	1.5 < 0.0 7.2 < 0.0 3.0 0.0	01 0.02 - 01 0.54 - 03 0.07 -	- 5.73 46. - 13.4 12 - 9.85 84.	2 47.4 0 124 3 79.4	60.1 : 111 :	2.6 0.2 2.8 3.8 2.8 2.5 0.	4 76.9 - 31 2 10
July	Min Max	283.9 0.0 11.2 0.0 691.5 348.9 13.3 0.1	0.0 271.1 271.1 0.0 331.0 331.0	7.2 7.4 7.7 7.9	7.3 7.8	300 47 532 112		3.0 3.0 6.6 6.6	169 357	86 - 318 -	<	2 < 2	4.33 3.6 9.28 10	.5	0.26 0.26 0.67 0.67	38.4	24.8 54.2	0.44 0.4 3.57 3.5	4 21.9 27.5 7 64.5 71.1	1.6 < 0.0 5.6 0.1	.11 0.28 -	- 6.57 37. - 12.2 10	6 59.3 1 105	73.6 : 101	2.2 1.6 0. 4.3 3.6 0.	2 5 80.5 2 24
August	Avg/Geomean Min Max	316.3 19.4 12.1 0.0 273.4 0.0 10.2 0.0 621.0 260.2 13.2 0.0	0.0 284.9 284.9 0.0 260.5 260.5 0.0 348.1 348.1	7.6 7.6 7.4 7.3 7.8 7.9	7.5 7.3 7.9	427 82 326 55 568 113		4.7 4.7 3.1 3.1 7.7 7.7	7 301 1 181 7 365	134 - 44 - 276 -	2.	2 < 2 4 4	7.75 4.9 4.53 0.5 10.7 8.7	57 79	0.36 0.36 0.19 0.19 0.54 0.54	13.3 40.0	11.4 44.6	1.14 1.1 0.59 0.5 1.99 1.9	4 53.8 39.1 9 25.7 3.9 9 70.5 62.3	2.8 < 0.0 2.2 < 0.0 3.9 < 0.0	01 0.09 - 01 0.02 - 01 0.52 -	11.4 8 8.3 4 13.8 9	5 32.7 3 97.1	89.0 71.0 100	5.9 2.8 0. 4.3 1.0 0. 3.0 9.0 0.	7 11 7 4 71.1 7 37
September	Avg/Geomean Min Max	293.0 6.4 11.0 0.0 272.2 0.0 0.0 0.0 418.9 81.7 13.3 0.0	0.0 275.5 275.5 0.0 260.4 260.4 0.0 333.2 333.2	7.5 7.7 7.4 7.5 7.7 7.8	7.5 7.4 7.6	345 72 276 44 552 98		5.4 5.4 3.5 3.5 7.0 7.0	286 204 344	139 – 71 – 236 –	3. 	3 3.3 2 2 4 4	8.38 5.9 6.39 3.8 9.90 7.5	95 39 59	0.42 0.42 0.26 0.26 1.04 1.04	23.4	36.3 21.3 42.4	1.94 1.9 0.74 0.7 5.53 5.5	4 44.6 31.2	4.0 < 0.0 2.2 < 0.0 7.5 < 0.0	.01 0.02 -	- 12.5 8 - 9.7 5 - 14.2 10	4 78 · · · · · · · · · · · · · · · · · ·	94 80	3.8 3.0 3.6 2.0 4.0 4.8	- 16 - 5 69.9 - 170
October	Avg/Geomean Min Max	275.1 0.4 12.5 0.0 268.8 0.0 10.9 0.0	0.0 262.2 262.2 0.0 255.5 255.5 0.0 269.2 269.2	7.6 7.7 7.5 7.5	7.5 7.4	354 254 268 164 436 344		4.5 4.5 2.6 2.6	330	203 - 162 -	3. <	1 3.1	8.92 7.9 7.29 7.6 9.94 8.2	96 67	0.34 0.34 0.26 0.26		43.5 39.1	2.77 2.7 0.84 0.8 4.40 4.4	7 61.5 61.0 4 55.3 53.7	4.7 0.0		- 10.6 8 - 8.2 6	0 81 8 80	89 80	3.9 6.9 3.8 2.6	- 11 - 3 71.1
November	Avg/Geomean Min	275.6 0.0 12.5 0.0 268.0 0.0 11.5 0.0 291.6 0.0 13.8 0.0	0.0 263.0 263.0 0.0 254.8 254.8 0.0 279.3 279.3	7.6 7.5	7.5 7.4	363 276		3.8 3.8 2.6 2.6	3 327 5 239			3 3 2 < 2	9.94 8.2 8 8.87 - 7.92 - 10.3 -		0.32 0.32 0.26 0.26	32.0		4.40 4.4 2.62 2.6 1.20 1.2		7.0 0.1 4.2 < 0.1 3.3 < 0.1	01	10.3 89. 6.6 75.	6	92.4 78.9	3.0	- 42 - 6 - 2 68.3
December		277.8 0.9 12.7 0.0 250.7 0.0 11.7 0.0	0.0 264.2 264.2 0.0 238.5 238.5	7.5 7.5 7.4 7.4	7.6 7.5 7.3	326 174 252 144		3.3 3.3 2.4 2.4	3 389 3 321 4 258	207 – 178 –	2.	4 2.4 2.4 2 < 2	8.77 5.5 3.93 4.6	59 31	0.65 0.65 0.24 0.24 0.18 0.18	44.0 39.2 30.5	34.1	3.67 3.6 1.85 1.8 1.17 1.1	7 71.3 5 56.9 49.3 7 10.0 47.0	5.2 < 0.0 3.2 < 0.0 2.4 < 0.0	01 0.04 - 01 0.02 -	- 12.6 10 - 9.86 15 - 7.01 91.	7 1 1 401 3 367	111 157 93.4	2.6 1.5 2.4 0.8	- 12 - 6.6 - 1 64.4
Annua	Max al Volume (ML)	330.8 13.4 13.5 0.0 107,556 3,351 4,226 0	0.0 304.2 304.2 0 99,979 99,979	7.7 7.6	7.6	396 210		4.2 4.2	371	239 -		3 3	10.40 6.2	20	0.29 0.29	45.2	36.6	3.68 3.6	8 67.0 53.5	5.1 < 0.1	.01 0.05 -	- 13.1 33	4 450	311 :	2.9 2.7	- 12 870.1
2024 2023	Avg Avg	294 9.1 11.5 0.00 (301 24.2 11.1 0.00 (7.5 7.6 7.5 7.5	7.5 3 7.5 3	67 122 17 101	247	4.6 4.6 4.0 4.0	319 296	166 123 72	2.9 2.5	2.9 2.5	8.31 6.36 7.40 4.42	5.83	0.35 0.35 0.30 0.30	37.0 3 33.9 2	6.0 6.7 10.0	2.80 2.80 2.02 2.02	55.7 46.1 49.0 33.4 16	4.3 0.02 i.0 3.5 0.03	2 0.08 3 0.34 0.69	9.81 99 8.93 94		106 102		. '

PBP – Plant Bypass TBP – Total Bypass Plant (including plant and secondary) SEC – Secondary Bypass Plant

EPE - Enhanced Primary Effluent EPT – Enhanced Primary Treatment

Outfall 10 - Combined, UV-disinfected (FEC + EPE) Outfall 20 - Combined Bypass (RAW + PE + EPE) Outfall 30 - Combined Bypass (RAW + Screened + PE + EPE)

CBOD₅ – 5-day Inhibited BOD

FEC – Final Effluent, Combined RAW – Influent BDD $_{0}$ – 5-day Biological Oxygen Demand NH $_{3}$ -N – Ammonia as nitrogen F. coli; Avg for others